
Agilent Technologies OTDRs Programming Guide

Notices
Copyright © 1998-2000 Agilent
Technologies Deutschland GmbH. All
rights reserved.

No part of this manual may be
reproduced in any form or by any
means (including electronic storage
and retrieval or translation into a
foreign language) without prior
agreement and written consent from
Agilent Technologies, Inc. as
governed by United States and
international copyright laws.

Warranty
The material contained in this
document is subject to change without
notice. Agilent Technologies makes
no warranty of any kind with regard to
this material, including, but not
limited to, the implied warranties of
merchantability and fitness for a
particular purpose. Agilent
Technologies shall not be liable for
errors contained herein or for
incidental or consequential damages in
connection with the furnishing,
performance, or use of this material.

Edition/Print Date
All Editions and Updates of this
manual and their creation dates are
listed below.

E4310-91016 Third Edition E0401

First Edition E0298
Second Edition E1098, E0599, E0500
Third Edition E0401

Assistance
Product maintenance agreements and
other customer assistance agreements
are available for Agilent Technologies
products.

For any assistance, contact your
nearest Agilent Technologies Sales
and Service Office (see �Service and
Support� on page 6).

ISO 9001 Certification
Produced to ISO 9001 international
quality system standard as part of
Agilent Technologies� objective of

continually increasing customer
satisfaction through improved process
control.

Bellcore Certification of
Excellence
Agilent Technologies is officially
designated Bellcore Certification
Eligible, and is awarded Bellcore�s
Certification of Excellence for its
OTDR Data Format.
Agilent Technologies GmbH
Herrenberger Str. 130
71034 Böblingen
Germany

About This Manual

This manual contains information about SCPI commands which can be
used to program all HP/Agilent Optical Time Domain Reflectometers.

Instruments affected are:

� HP/Agilent E4310A (8147A) OTDR (Mainframe OTDR)

� Agilent E6000 Mini-OTDR (Mini-OTDR)

� Agilent E6020A Mini-Fiber Break Locator (Mini-FBL)

� Agilent E605* and E606* Rack OTDRs (Rack OTDR).

Most SCPI commands can be used with all OTDRs, but a few are only
applicable to particular instruments, or have slightly different names. For
example, commands which may also be used with different Mini-OTDR
submodules have an extra number in their name, indicating which
submodule is affected.

Each command definition contains text showing which instrument is
affected. A command which affects �All� can be used with all the
instruments listed above.

The Structure of this Manual
This manual is divided into 4 parts:

� Chapter 1 gives a general introduction to SCPI programming with
OTDRs.

� Chapter 2 lists the OTDR-specific SCPI commands.

� Chapters 3 to 5 give fuller explanations and examples of the OTDR-
specific commands.

� Chapter 6 gives some example programs showing how the SCPI
commands can be used with OTDRs.

In addition, there is an appendix containing information about the HP VEE
driver.

Conventions used in this manual
� All commands and typed text is written in Courier font, for example
INIT[:IMM][:ALL].

� SCPI commands are written in mixed case: text that you MUST print is
written in capitals; text which is helpful but nor necessary is written in
lower case.

� So, the command INITiate[:IMMediate][:ALL] can be
entered either as init[:imm][:all], or as
initiate[:immediate][:all]. It does not matter whether you
enter text using capitals or lower-case letters.

� SCPI commands often contain extra arguments in square brackets.
These arguments may be helpful, but they need not be entered.

� So, the command INITiate[:IMMediate][:ALL] can be
entered as init or initiate.

� A SCPI command which can be either a command or a query is
appended with the text /?.

So, SYSTem:SET/? refers to both the command SYSTem:SET and
the query SYSTem:SET?.

Related Publications
You can find more information about the instruments covered by this
manual in the following manuals:

� HP 8147A Optical Time Domain Reflectometer User�s Guide (Agilent
Product Number E4310-91011).

� Agilent E6000C Mini-OTDR User�s Guide (Agilent Product Number
E6000-91031)

� Agilent E6020A Mini-Fiber Break Locator User�s Guide (Agilent
Product Number E6020-91011)

� Agilent E6053A, E6058A and E6060A Rack OTDR User�s Guide
(Agilent Product Number E6050-91011).

NOTE Please note that these User Guides no longer contain programming
information, and must now be used in conjunction with this manual.

If you are not familiar with the GPIB, then refer to the following books:

� HP publication 5952-0156, Tutorial Description of HP-IB.

� ANSI/IEEE-488.1-1978, IEEE Standard Digital Interface for
Programmable Instrumentation, and ANSI/IEEE-488.2-1987, IEEE
Standard Codes, Formats, and Common Commands, published by the
Institute of Electrical and Electronic Engineers.

In addition, the commands not from the IEEE 488.2 standard are defined
according to the Standard Commands for Programmable Instruments
(SCPI).

For an introduction to SCPI and SCPI programming techniques, refer to
the following documents:

� Hewlett-Packard Press (Addison-Wesley Publishing Company, Inc.): A
Beginners Guide to SCPI by Barry Eppler.

� The SCPI Consortium: Standard Commands for Programmable
Instruments, published periodically by various publishers. To obtain a
copy of this manual, contact your Agilent TEchnologies representative.

Service and Support

Any adjustment, maintenance, or repair of this product must be performed
by qualified personnel. Contact your customer engineer through your local
Agilent Technologies Service Center. You can find a list of local service
representatives on the Web at:
http://www.agilent-tech.com/services/English/index.html

If you do not have access to the Internet, one of these centers can direct
you to your nearest representative:

United States Test and Measurement Call Center

(800) 452-4844 (Toll free in US)

Canada (905) 206-4725

Europe (31 20) 547 9900

Japan Measurement Assistance Center

(81) 426 56 7832
(81) 426 56 7840 (FAX)

Latin America (305) 267 4245
(305) 267 4288 (FAX)

Australia/New
Zealand

1 800 629 485 (Australia)

0800 738 378 (New Zealand)

Asia-Pacific (852) 2599 7777
(852) 2506 9285 (FAX)

http://www.agilent-tech.com/services/English/index.html
http://www.agilent-tech.com/services/English/index.html

Front Matter
1 Introduction to Programming
1.1 Command Messages ...17

Units .. 17
Trace Array ... 18
Data ... 18
Message Exchange ... 18
The Input Queue ... 19
The Output Queue .. 19
The Error Queue ... 19

1.2 Common Commands ..20
Common Command Summary ... 21
Common Status Information .. 22

1.3 HP/Agilent OTDR Status Model23
Annotations ... 25
Standard Event Status Register ... 25
Operation/Questionable Status ... 26
Operation Status ... 26
Questionable Status .. 26
Status Command Summary .. 27
Mini-OTDR and Rack OTDR Bit Table 28
Mainframe OTDR Bit Table ... 28
Other Commands .. 29

2 Specific Commands
2.1 Specific Command Summary33
 7

Front Matter
3 Instrument Setup and Status
3.1 IEEE-Common Commands45
3.2 Status Reporting � The STATus Subsystem56
3.3 Interface/Instrument Behaviour Settings � The SYS-
Tem Subsystem ...61

4 Operations on Traces and Measurements
4.1 Root Layer Commands ..79
4.2 Playing With Data � The PROGram and CALCulate
Subsystems ...83
4.3 Measurement Functions � The SENSe Subsystem 89
4.4 Signal Generation � The SOURce Subsystem100
4.5 Trace Data Access � The TRACe Subsystem110

5 Mass Storage, Display, and Print Functions
5.1 Display Operations � The DISPlay Subsystem123
5.2 Print Operations � The HCOPy Subsystem130
5.3 File Operations � The MMEMory Subsystem137

6 Programming Examples
8

Front Matter

6.1 How to Connect your OTDR to a PC147

How to set the Instrument Configuration 148
6.2 How to Connect with a Terminal Program150
6.3 Using a Program to Connect to the OTDR151
6.4 How to Send Commands and Queries152

Commands .. 153
Queries .. 153
Blocks transfer .. 153

6.5 Common Tasks ..154
How to Initialize the Instrument ... 154
How to Set Up an OTDR Measurement 155
How to Run a Measurement ... 155
How to Scan a Trace ... 156
How to Process a Trace .. 156
How to Upload a Bellcore File from the current trace 156

6.6 Advanced Topics ...157
How to Download a Bellcore File 157
How to Use the Power Meter and Source Mode 158
How to Store Traces on Other Devices 158

6.7 SCPI data transfer between PC and OTDR159

A The VEE Driver
A.1 What is HP VEE ? ..165

Using the RS232 port ... 165
A.2 How to Install HP VEE ..166
A.3 Features of the HP OTDR VEE Driver169
 9

Front Matter

A.4 Directory Structure ..170
A.5 Opening an Instrument Session170
A.6 Closing an Instrument Session171
A.7 VISA Data Types and Selected Constant Definitions
172
A.8 Error Handling ...172
A.9 Introduction to Programming173

Selecting Functions ...173
Example Programs ..174
LabView ..174
LabWindows ...175

A.10 VISA-specific information175
Instrument Addresses ..175
Callbacks ...176

A.11 Using the HP OTDR VEE Driver in Application De-
velopment Environments ...176

Microsoft Visual C++ 4.0 (or higher) and Borland C++ 4.5 (or
higher) ...176
Microsoft Visual Basic 4.0 (or higher)176
HP VEE 3.2 (or higher) ...177
LabWindows CVI/ (R) 4.0 (or higher)177

A.12 Online information ...178
10

Front Matter

Figure 1-1 Common Status Registers ... 22
Figure 6-1 Instrument configuration - example .. 149
Figure 6-2 Connection check - example ... 152
Figure 6-3 Query - example.. 153
Figure 6-4 Blocks transfer - example ... 154
Figure 6-5 Uploading a Bellcore file - example ... 157
Figure A-1 VXIplug&play window ... 167
Figure A-2 HP VEE - Install options.. 168
 11

Front Matter
12

Front Matter

Table 1-1 Common Command Summary... 21
Table 2-1 Specific Command Summary... 34
Table 6-1 Cable configuration for connection to a PC ... 147
Table 6-2 Transmission parameters .. 150
 13

Front Matter
14

1

1 Introduction to
Programming

16

Introduction to
Programming

This chapter introduces some background information that may
help you when programming OTDRs. You can find general
information about SCPI commands here, and lists and descriptions
of some useful IEEE standard common commands.

Introduction to Programming
1.1 Command Messages

A command message is a message from the controller to the
OTDR. The following are a few points about command messages:

 � Either upper-case or lower-case characters can be used.

 � The parts in upper-case characters in the command descriptions
must be given. The parts in lower-case characters can also be
given, but they are optional.

 � The parts in brackets [] in the command description can be
given, but they are optional.

 � In the syntax descriptions the characters between angled
brackets (<...>) show the kind of data that you require. You do
not type these brackets in the actual command. �<wsp>� stands
for a white space character.

 � A command message is ended by a line feed character (LF) or
<CR><LF>.

 � Several commands can be sent in a single message. Each
command must be separated from the next one by a semicolon
�;�.

Units
Where units are given with a command, usually only the base units
are specified. The full sets of units are given in the table below.

The default unit of length is usually mm.

Unit Default Allowed Mnemonics
meters M NM, UM, MM, M, KM
miles MI MIles
feet FT FT, KFT
decibel DB MDB, DB
second S NS, US, MS, S
 17

Introduction to Programming
Trace Array
The Mini-OTDR and Rack OTDR can load up to two traces into
their memory. The Mainframe OTDR can load up to four traces.
These traces form a trace array. One of the entries in this array is
always the current entry. Most operations work on this entry.

Data
With the commands you give parameters to the OTDR and receive
response values from the OTDR. Unless explicitly noticed these
data are given in ASCII format (in fact, only the trace data are given
in binary format). The following types of data are used:

 � Boolean data may only have the values 0 or 1.

 � Data of type short may have values between -32768 and 32767.
When the OTDR returns a short value, it always explicitly gives
the sign.

 � Float variables may be given in decimal or exponential writing
(0.123 or 123E-3).

 � A string is contained between a " at the start and at the end or a
' at the start and at the end. When the OTDR returns a string, it
is always included in " " and terminated by <END>.

 � When a register value is given or returned (for example *ESE),
the decimal values for the single bits are added. For example, a
value of nine means that bit 0 and bit 3 are set.

 � Larger blocks of data are given as Binary Blocks, preceded by
�#HLenNumbytes�, terminated by <END>; HLen represents the
length of the Numbytes block. For example:
#16TRACES<END>.

Message Exchange
The OTDR exchanges messages using an input and an output
queue. Error messages are kept in a separate error queue.
18

Introduction to Programming
The Input Queue
The input queue is a FIFO queue (first-in first-out). Incoming bytes
are stored in the input queue as follows:

 � Receiving a byte:
� Clears the output queue.
� Clears Bit 7 (MSB).

 � No modification is made inside strings or binary blocks.
Outside strings and binary blocks, the following modifications
are made:
� Lower-case characters are converted to upper-case.
� Two or more blanks are truncated to one.

 � The parser is started if the LF character is received or if the input
queue is full.

Clearing the Input Queue

Switching the power off causes commands that are in the input
queue, but have not been executed to be lost.

The Output Queue
The output queue contains responses to query messages. The
OTDR transmits any data from the output queue immediately.

On the Mainframe OTDR, each response message ends with a
carriage return (CR, 0D16) and a LF (0A16), with EOI=TRUE. If no
query is received, or if the query has an error, the output queue
remains empty.

The Error Queue
The error queue is 30 errors long. It is a FIFO queue (first-in first-
out). That is, the first error read is the first error to have occurred.

If more than 29 errors are put into the queue, the message '-350,
"Queue overflow" ' is placed as the last message in the queue. The
queue continues to work, but now with only the first 29 positions.
 19

Introduction to Programming
The oldest error message in the queue is discarded each time a new
error message added.

1.2 Common Commands

The IEEE 488.2 standard has a list of reserved commands, called
common commands. Some of these commands must be
implemented by any instrument using the standard, others are
optional. The OTDR implements all the necessary commands, and
some optional ones. This section describes the implemented
commands.
20

Introduction to Programming
Common Command Summary
Table 1-1gives a summary of the common commands.

NOTE These commands are described in more detail in �IEEE-Common
Commands� on page 45

Table 1-1 Common Command Summary

Command Parameter Function
*CLS Clear Status Command
*ESE Standard Event Status Enable Command

*ESE? Standard Event Status Enable Query
*ESR? Standard Event Status Register Query
*FTY Reset defaults and reboot

(not possible on Mainframe OTDR)
*IDN? Identification Query
*LRN? Read instrument settings
*OPC? Operation Complete Query
*OPT? Options Query
*RCL <location> Recall Instrument Setting
*RST Reset Command
*SAV <location> Save Instrument Setting

*STB? Read Status Byte Query
*TST? Self Test Query
*WAI Wait Command
 21

Introduction to Programming
Common Status Information
There are four registers for the status information. Two of these are
status-registers and two are enable-registers. These registers
conform to the IEEE Standard 488.2-1987. You can find further
descriptions of these registers under *ESE, *ESR?, *SRE, and
*STB?. The following figure shows how the registers are
organized.

* The questionable and operation status command trees are
described in �Status Reporting � The STATus Subsystem� on
page 56.

ATTENTION Unused bits in any of the registers return 0 when
you read them.

For information about the status model, see �Status Reporting �
The STATus Subsystem� on page 56

Figure 1-1 Common Status Registers
22

Introduction to Programming
1.3 HP/Agilent OTDR Status Model

The following figure describes the relevant bit patterns and their
relationship of the SCPI status/error model
 23

Introduction to Programming
Bit 7
Operat.
Status

Bit 6
*Master
Summ

Bit 5
ESR

Summ.

Bit 4
MAV

Bit 3
Quest.
Status

Bit 2
*unused

Bit 1
*unused

Bit 0
Laser
Active

Bit 7
Power

On

Bit 6
*User

Request

Bit 5
Cmd
Error

Bit 4
Exec
Error

Bit 3
DevDep

Error

Bit 2
Query
Error

Bit 1
*Req

Control

Bit 0
Operat.
Compl.

0, *unused

1, *unused

2, *unused

3, *unused

4, meas running

5, *unused

6, *unused

7, *unused

8, scan running

9, printing

10, *unused

11, *unused

12, *unused

13, *unused

14, *unused

15, *unused

0, *unused

1, *unused

2, *unused

3, power warn

4, *unused

5, *unused

6, *unused

7, *unused

8, *unused

9, *unused

10, *unused

11, *unused

12, *unused

13, *unused

14, cmd. warn.

15, *unused

EVENt <- CONDition CONDition -> EVENt

Enable
Operation Questionable

Enable

Standard Event
Status Enable

Status
Byte

Standard Event
Status Register

+& &

 Status Status

+

+

&

24

Introduction to Programming
Bits marked with * are not used and therefore always set to 0. The
few used bits in the operation are marked with arrows, as are the
questionable status registers.

Annotations
Status Byte:

 � Bit 0 is set any time the laser is on (measurement running)

 � Bits 1 and Bit 2 are unused (0)

 � Bit 3 is built from the questionable status event register and its
enable mask.

 � Bit 4 (MAV) is generally 0.

 � Bit 5 is built from the SESR and its SESE.

 � Bit 6 is always 0 because the SRE mask is always 0 (no service
request).

 � Bit 7 is built from the operation status and its enable mask.

Standard Event Status Register
 � Bit 0 is set if an operation complete event has been received

since the last call to *ESR?.

 � Bit 1 is always 0 (no service request).

 � Bit 2 is set if a query error has been detected.

 � Bit 3 is set if a device dependent error has been detected.

 � Bit 4 is set if an execution error has been detected.

 � Bit 5 is set if a command error has been detected.

 � Bit 6 is always 0 (no service request).

 � Bit 7 is set for the first call of *ESR after Power On.
 25

Introduction to Programming
Operation/Questionable Status
 � The Operation/Questionable Status consists of a condition and

an event register.

 � A "rising" bit in the condition register is copied to the event
register.

 � A "falling" bit in the condition register has no effect on the event
register.

 � Reading the condition register is non-destructive.

 � Reading the event register is destructive.

 � A summary of the event register and its enable mask is set in the
status byte.

Operation Status
 � Bit 4 is set if a measurement is running, and reset when the

measurement is stopped.

 � Bit 8 is set if the scan trace is running, and reset when the scan
trace is stopped.

 � Bit 9 is set if a printout has been started, and reset when the
printout is finished or cancelled.

 � All other bits are unused, and therefore set to 0.

Questionable Status
 � Bit 3 is set if a weak power supply has been detected (DC supply,

battery low).

 � Bit 14 is set if a questionable command has been received (for
example, starting the scan trace or printout with no valid trace
data).

 � All other bits are unused, and therefore set to 0.
26

Introduction to Programming
Status Command Summary

*STB? returns status byte, value 0 .. +255
*ESE sets the standard event status enable register, parameter 0 .. +255
*ESE? returns SESE, value 0 .. +255
*ESR? returns the standard event status register, value 0 .. +255
*OPC? returns 1 if all operations (scan trace printout, measurement) are

completed. Otherwise it returns 0.
*CLS clears the status byte and SESR, and removes any entries from the error

queue.
*RST clears the error queue, loads the default setting, and restarts

communication.
NOTE: *RST does NOT touch the STB or SESR. A running
measurement is stopped.

*TST? initiates an instrument selftest and returns the results as a 32 bit LONG.
If a measurement is running, the status of the latest selftest is returned
and an error is set. +0 means "passed". The bits of the 32 bit long
integer have the following meaning:
 27

Introduction to Programming
Mini-OTDR and Rack OTDR Bit Table

Mainframe OTDR Bit Table

<-------- Overall State - "0" means passed, "1" means ST failed or not tested -------->
Bit 31

ST-
Error

Bit 30
Main-
frame
State

Bit 29
Video
State

Bit 28
Batt
State

Bit 27
RTC
State

Bit 26
SMC
State

Bit 25
Check
Sum
State

Bit 24
Power

6V
State

Bit 23
Flash
State

Bit 22
Floppy
State

Bit 21
DAP
State

Bit 20
Sub-

Module
State

Bit 19
Module

State

Bits 18 .. 16

Unused

Bits 15 .. 8

Submodule Error

Bits 7 .. 0

Module Error

<----------------- Error code -----------------> <----------------- Error code ----------------->

MSW:

Bit 31
Selftest
ERROR

Bits 30 .. 26
unused

Bit 25
Module

Init
failed

Bit 24
IBI-test
failed

Bit 23
FATAL

ST-Error

Bit 22
ST non-

fatal
Error

Bit 21
analog
summ

Bit 20
digital
summ

Bit 19
MOD
Temp.

Bit 18
LAS

Temp.

Bit 17
APD-L
Temp.

Bit 16
APD-H
Temp.

LSW:

Bit 15
APD-
HV

Bit 14
RCV-
OFFS

Bit 13
OFFS
HILIN

Bit 12
OFFS
Higain

Bit 11
OFFS
Logain

Bit 10
RMS

HILIN

Bit 9
RMS

Higain

Bit 8
RMS

Logain

Bit 7
not used

Bit 6
DAP-
ALU

Bit 5
DSP-
Code

Bit 4
CAL-
Data

Bit 3
LOG-
Table

Bit 2
SHOT-
RAM

Bit 1
DAP-
RAM

Bit 0
DSP-
RAM
28

Introduction to Programming
Other Commands

*RCL recalls a pre-defined setting.
This is the same as �*RCL� on page 21, except that it is read from a
harddisk.

*SAV stores the current setting.
This is the same as �*SAV� on page 21, except that it is stored on a
harddisk.

*OPT? returns a string containing the installed options:
<FLOPPY opt>, <COLOR opt>.
For example, *OPT? → FLOPPY, 0
An uninstalled option returns 0.

*WAI causes the remote control part of the instrument to wait for at least 2
seconds before continuing to parse commands. This gives the
instrument a chance to accomplish pending tasks.
The instrument returns to receiving commands after 2 seconds, or the
completion of a printout or scan trace or a limited measurement time
(averaging time > 0).
NOTE: During a running measurement *WAI does NOT wait for the
scan trace to finish as it runs continuously.

*IDN? is an identification string, like �*LRN?� on page 21.
*FTY resets the defaults and reboot

(not possible on Mainframe OTDR)
 29

Introduction to Programming
30

2

2 Specific Commands

32

Specific Commands

This chapter gives information about the HP/Agilent OTDR remote
commands. It lists all the remote commands relating to OTDRs,
with a single-line description.

Each of these summaries contains a page reference for more
detailed information about the particular command later in this
manual.

Specific Commands
2.1 Specific Command Summary

The commands are ordered in a command tree. Every command
belongs to a node in this tree.

The root nodes are also called the subsystems. A subsystem
contains all commands belonging to a specific topic. In a subsystem
there may be further subnodes.

All the nodes have to be given with a command. For example in the
command hcop:item:all

 � HCOPy is the subsystem containing all commands for
controlling the print out,

 � ITEM is the subnode that provides selecting what should be
printed,

 � ALL is the command selecting everything for the print out.

NOTE If a command and a query are both available, the command ends /?.

 So, disp:brig/? means that disp:brig and disp:brig? are
both available.

Table 2-1 gives an overview of the command tree. You see the
nodes, the subnodes, and the included commands.
 33

Specific Commands
Command Description Page
ABORt[1/2] Stops a running measurement. 79
CALCulate:MATH:EXPRession

:NAME? Allows calculating loss and attenuation values. 87
:REFLex? Calculates Reflectance. 87
:SPLice? Calculates Splice Loss. 88
:TYPE/? Sets/queries whether Reflection Height or Reflectance is

used.
88

DISPLay
:BRIGhtness/? Changes or queries the current LCD brightness. 123
:CONTrast/? Changes or queries the current LCD contrast. 123
:ENABle/? Enables, disables, or checks the internal LCD. 124

DISPLay[:WINDow]:GRAPhics
:COLor/? Changes or queries the trace color. 125
:LTYPe/? Changes or queries the trace linestyle. 125

DISPLay[:WINDow]:TEXT
:DATA/? Sets or requests a comment. 126

DISPLay[:WINDow]:X
:SCALe/? Changes or queries the zooming mode (full trace or zoom) 127

DISPLay[:WINDow]:X[:SCALe]
:PDIVision/? Changes or queries the scaling of the X-axis. 128

DISPLay[:WINDow]:Y[:SCALe]
:PDIVision/? Changes or queries the scaling of the Y-axis. 129

FETCh[:SCALar]
:POWer[:DC]? Reads current power meter value (triggers a measurement). 79

Table 2-1 Specific Command Summary
34

Specific Commands
HCOPy
:ABORt Cancels the current print job. 130
:DESTination/? Changes or queries the active printer. 130
[:IMMediate] Immediately starts printing everything selected. 131

HCOPy:ITEM
:ALL[:IMMediate] Start printing everything. 132

HCOPy:ITEM[:WINDow]
[:IMMediate] Immediately starts printing the parameter window. 132
:STATe/? Enables or queries printing the parameter window. 132

HCOPy:ITEM[:WINDow]:TEXT
[:IMMediate] Immediately starts printing the event table. 133
:STATe/? Enables or queries printing the event table. 133

HCOPy:ITEM[:WINDow]:TRACe
[:IMMediate] Immediately starts printing the trace. 134
:STATe/? Enables or queries printing the trace. 133

HCOPy:ITEM[:WINDow]:TRACe:GRATicule
:STATe/? Enables or queries printing the trace window grid. 135

HCOPy:PAGE
:SIZE/? Selects or queries the size of the paper. 136

INITiate[1][:IMMediate]
[:ALL] Starts a measurement. 80

INITiate2 Starts a power meter measurement. 80
:CONTinuous/? Starts or Queries a single/continuous power meter

measurement.
80

KEYBoard Allows the use of a terminal as an external keyboard 81

Command Description Page

Table 2-1 Specific Command Summary (continued)
 35

Specific Commands
MMEMory
:CATalog? Returns contents of current directory. 137
:CDIRectory/? Changes or queries the current directory. 138
:DELete Deletes a file. 138
:FREE Reclaims free space. 139
:FREE? Returns the amount of free space and the amount used 139
:INITialize Formats the specified storage device 139
:MDIRectory Creates a directory on the current storage device. 140
:MSIS/? Changes or queries the current storage device. 141
:NAME/? Changes or queries the name of the current trace. 141

MMEMory:COPY
:FILE Copies a file to a new name/device 138

MMEMory:LOAD
:FILE? Returns a Bellcore binary file. 140
:STATe Loads a settings file. 140
:TRACe Loads a trace file. 140

MMEMory:SAVE
:FILE Downloads a Bellcore binary file 142

MMEMory:STORe
:STATe Saves a settings file. 142
:TRACe Saves a trace file. 142
:TRACe:REVision/? Sets or requests the Bellcore file revision used. 142

PROGram:EXPLicit
:CHECk:LIMit/? Sets or queries the Pass/Fail Test limits 83
:EXECute Executes a special task. 85

Command Description Page

Table 2-1 Specific Command Summary (continued)
36

Specific Commands
:NUMBer/? Sets or requests the threshold in mdB 85
:STATe/? Controls a running task. 86

READ[:SCALar]
:POWer[:DC]? Reads current power meter value (no measurement

triggered).
82

SENSe:AVERage
:COUNt/? Sets or queries the current averaging time. 89

SENSe:AVERage:COUNt
:NUMBer/? Sets or queries the number of averages for measurements 90

SENSe:DETector
[:FUNCtion]/? Sets or queries the current measurement mode. 91
[:FUNCtion:]AUTO/? Enables or checks the auto mode. 92
[:FUNCtion:]OPTimize/? Sets or queries the optimization mode. 92
:MODE/? Sets or returns the current Mini-OTDR mode 93

SENSe:DETector:SAMPle
:DISTance? Returns the current sample distance. 94

SENSe:FIBer
:REFRindex/? Sets or returns the current refractive index. 94
:SCATtercoeff/? Sets or returns the current scatter coefficient. 95
:TYPE? Returns the current fiber type. 95

SENSe:POWer
:FREQuency? Queries the detected power meter input frequency 96
:REFerence/? Sets or Queries the power meter reference value. 96
:UNIT/? Sets or Queries the power meter power units. 98
:WAVelength/? Sets or Queries the power meter wavelength. 98

Command Description Page

Table 2-1 Specific Command Summary (continued)
 37

Specific Commands
SENSe:POWer:REFerence
:DISPlay Takes current power meter value as reference value. 97
:STATe/? Sets or Queries type of power meter display (relative or

absolute).
97

[SOURce:]
HOFFset/? Sets or returns the horizontal offset 101
WAVelength[1/2][:CW]/? Sets or returns the current wavelength. 108

[SOURce:]AM[:INTERNAL]
:FREQuency[1/2]/? Sets or returns frequency of chosen source. 100

[SOURce:]MARKer1/2/3
:POINt/? Sets or returns the position of the marker. 102
[:STATe]/? Activates, disables, or checks the marker. 103

SOURce:POWer
:STATe[1/2] Switches the laser of the chosen source on or off. 104
:STATE[1/2]? Queries the state of the chosen source. 104

[SOURce:]PULSe
:WIDTh/? Sets or returns the pulsewidth. 104
:WIDTh:LLIMit? Returns the lower limit of the measurement hardware. 105
:WIDTh:ULIMit? Returns the upper limit of the measurement hardware. 105

[SOURce:]RANGe
:LUNit/? Sets or returns the current length unit. 106
:SPAN/? Sets or returns the current measurement span. 106
:STARt/? Sets or returns the current measurement start. 107

[SOURce:]WAVelength[1/2][:CW]
AVAilable? Returns the available wavelength(s) 109

Command Description Page

Table 2-1 Specific Command Summary (continued)
38

Specific Commands
STATus
:PRESet Presets all registers and queues. 58

STATus:OPERation
[:EVENt]? Returns the event register. 56
:CONDition? Returns the condition register. 56
:ENABle/? Sets or queries the enable mask for the event register. 56

STATus:POWer
:ACDC? Queries how the battery is powered. 57
:CAPacity? Returns the power capacity of the battery. 57
:CURRent? Returns the current of the battery in mA. 58
:REMain? Returns the operating time in minutes. 58

STATus:QUEStionable
[:EVENt]? Returns the event register. 59
:CONDition? Returns the condition register. 59
:ENABle/? Sets or queries the enable mask for the event register. 59

SYSTem
:BRIDge Passes communication from serial port 1 to serial port 2 61
:DATE/? Sets or returns the OTDR�s internal date. 69
:ERRor? Returns the contents of the OTDR�s error queue. 70
:HELP? Returns a Help page on a specified topic 70
:KEY/? Simulates or Returns a key stroke on the OTDR�s front panel. 71
:PRESet Loads a predefined instrument setting. 73
:SET/? Sets or returns the current setting 73
:TIME/? Sets or returns the OTDR�s internal time. 74
:UPTime? Returns the time (in seconds) run on the OTDR 74

Command Description Page

Table 2-1 Specific Command Summary (continued)
 39

Specific Commands
:VERSion? Returns the OTDR�s SCPI version 75
SYSTem:COMMunicate

:GPIB[:SELF]:ADDRess/?Sets or returns the OTDR�s GPIB address. 61
SYSTem:COMMunicate:SERial

:FEED/? Sends a command or query to serial port 2 64
[:RECeive]:PORT? Returns the port used (RS232 or RS485) by the Rack OTDR 68
[:RECeive]:SBITS/? Sets or queries the number of stop bits. 68

SYSTem:COMMunicate:SERial[1|2][:RECeive]
:BAUD/? Sets or queries the baud rate. 62
:BITS/? Sets or queries the number of data bits. 63
:PACE/? Sets or queries the pace for the communication. 65
:PARity[:TYPE]/? Sends or returns the parity 66
:PARity:CHECk/? Activates the parity. 67

TRACe
:CATalog? Returns positions and names of currently loaded traces. 110
:DATA? Reads a complete trace data array. 111
:DELete Closes the current trace. 117
:DELete:ALL Closes all loaded traces. 117
:FEED:CONTrol/? Sets or queries the current trace. 117
:FREE? Returns the number of unused trace array values. 118
:POINts Sets the number of samples for the current trace. 118
:POINts? Returns the number of data points of the current trace. 119

TRACe:DATA
:FCRetloss? Returns the Front Connector return loss 112
:LINE? Reads samples 114

Command Description Page

Table 2-1 Specific Command Summary (continued)
40

Specific Commands
:TABLe? Returns an event table. 115
:TABLe:LOCK/? Sets or queries whether or not event table is locked. 115
:TORL? Returns the total optical return loss 116
:VALue? Returns a measured value at a sample point. 116

TRACe:DATA:CHECk
:TABLe? Returns a Pass/Fail Test table. 111
:STATe? Queries the Pass/Fail Test Table state. 112

TRACe:DATA:LANDmark
:ADD Adds a landmark 112
:DELete Deletes a landmark 113

TRAFficdet/? Sets/queries whether traffic detection is on or off 82

Command Description Page

Table 2-1 Specific Command Summary (continued)
 41

Specific Commands
42

3

3 Instrument Setup and
Status

44

Instrument Setup and
Status

This chapter gives descriptions of commands that you can use when
setting up your OTDR. The commands are split into the following
separate subsystems:

 � IEEE Specific commands: which were introduced in �Common
Commands� on page 20

 � :STATUS: commands which relate to the status model.

 � :SYSTEM: commands which control the serial interface and
internal data.

Other commands are described in Chapter 4 �Operations on Traces
and Measurements�, and Chapter 5 �Mass Storage, Display, and
Print Functions�.

Instrument Setup and Status
3.1 IEEE-Common Commands

�Common Commands� on page 20 gave a brief introduction to the
IEEE-common commands which can be used with OTDRs. This
section gives fuller descriptions of each of these commands.

command: *CLS
syntax: *CLS

description: The CLear Status command *CLS clears all the event registers summarized
in the Status Byte register.
Except for the output queue, all queues summarized in the Status Byte
register are emptied. The error queue is emptied.
Neither the Standard Event Status Enable register, nor the Service Request
Enable register are affected by this command.
After the *CLS command the instrument is left in the idle state. The
command does not alter the instrument setting.

parameters: none
response: none
example: *CLS

affects: All instruments
 45

Instrument Setup and Status

command: *ESE

syntax: *ESE<wsp><value>
description: The standard Event Status Enable command (*ESE) sets bits in the

Standard Event Status Enable register.
A 1 in a bit in the enable register enables the corresponding bit in the
Standard Event Status register.
The register is cleared at power-on. The *RST and *CLS commands do not
affect the register.

parameters: The bit value for the register (a short or a float):
Bit Mnemonic Decimal Value
7 (MSB) Power On 128
6 User Request 64
5 Command Error 32
4 Execution Error 16
3 Device Dependent Error 8
2 Query Error 4
1 Request Control 2
0 (LSB) Operation Complete 1

response: none
example: *ESE 21

affects: All instruments

command: *ESE?
syntax: *ESE?

description: The standard Event Status Enable query *ESE? returns the contents of the
Standard Event Status Enable register (see *ESE for information on this
register).

parameters: none
response: The bit value for the register (a short value).
example: *ESE? → 21<END>

affects: All instruments
46

Instrument Setup and Status
command: *ESR?
syntax: *ESR?

description: The standard Event Status Register query *ESR? returns the contents of the
Standard Event Status register. The register is cleared after being read.

parameters none
response The bit value for the register (a short or a float):

Bit Mnemonic Decimal Value
7 (MSB) Power On 128

 6 User Request 64
 5 Command Error 32

4 Execution Error 16
 3 Device Dependent Error 8

2 Query Error 4
 1 Request Control 2

0 (LSB) Operation Complete 1
example: *ESR? → 21<END>

affects: All instruments

command: *FTY
syntax: *FTY

description: The FacTorY defaults command *FTY resets your OTDR to the factory
defaults and reboots the OTDR.

parameters: none
response: none
example: *FTY

affects: Mini-OTDR, Mini-FBL and Rack OTDR
 47

Instrument Setup and Status
command: *IDN?
syntax: *IDN?

description: The IDeNtification query *IDN? gets the instrument identification over the
interface.

parameters: none
response: The identification terminated by <END>:

HP E6000 Mini-Optical Time Domain Reflectometer Mainframe:
nnnnnnnnnn, Module: mmmmmmmmmm SW_Rev i.j

HP:
mmmm:
ssssssss
rrrrrrrrrr
SW_Rev i.j

manufacturer
instrument model number (for example E6000)
serial number
firmware revision level
Software Revision number, for example 1.1 or 1.0

example: *IDN? → HP E6000 Mini Optical Time Domain
Reflectometer Mainframe 0123456789, Module:
ABCDE54321 SW_Rev 6.0<END>

NOTE The response from *IDN? for Mini FBLs, Rack OTDRs and
Mainframe OTDRs is respectively:

 Agilent E6020A Fiber Break Locator Instrument...

 HP E60xxA Rack Optical Time Domain Reflectometer...

 and

 HP 8147 Optical Time Domain Reflectometer...

affects: All instruments
48

Instrument Setup and Status
command: *LRN?
syntax: *LRN?

description: The LeaRN query *LRN? reads the complete instrument setting in a binary
block. The binary block can be directly stored as a setting file.

parameters: none
response: Binary block.
example: *LRN? → binblock

affects: All instruments

command: *OPC?
syntax: *OPC?

description: The OPeration Complete query *OPC? parses all program message units in
the input queue.
If a print, measurement or scan trace is active, *OPC? returns 0. Otherwise,
*OPC? returns 1.

The following actions cancel the *OPC? query (and put the instrument into
Operation Complete, Command Idle State):

 � Power-on
 � the Device Clear Active State is asserted on the interface.
 � *CLS
 � *RST

parameters: none
response: 0<END> print, measurement, Scan Trace active, or

1<END>
example: *OPC? → 1<END>

affects: All instruments
 49

Instrument Setup and Status
command: *OPT?
syntax: *OPT?

description: The OPTions query *OPT? gets a list of the installed options over the
interface. All three options are always listed, in the same order, separated
by commas. If an option is not installed in the instrument, 0 is sent in its
position in the list.

parameters: none
response: Mini-OTDR / Mini-FBL response:

module-type|0, FLOPPY|0, COLOR|0, EXTFLASH|0,
submodule-type : submodule serial no|0
Rack OTDR response:
module-type|0, FLOPPY|0, COLOR|0, EXTFLASH|0,
submodule-type : submodule serial no|0 RS232|RS485
Mainframe OTDR response:

module-type|0, DC|0, PRINTER|0, COLOR|0, HPIB|0, LAN|0

NOTE The second and third arguments for the Rack OTDR (FLOPPY
and COLOR) are included for the sake of consistency.

The Rack OTDR has no floppy option, and is always configured as
a color unit.

NOTE In this release of the Mini-OTDR and Rack OTDR, the fourth
argument (EXTFLASH) will always be 0.

example: Mini-OTDR / Mini-FBL example:
*OPT? → E6003A, FLOPPY, 0, 0, E6006A :
DE13A00108<END>

Rack OTDR example:
*OPT? → E6053A, 0, 0, 0, 0 RS485<END>

Mainframe OTDR example:
*OPT? → E4316A, DC, 0, 0, HPIB, LAN<END>

affects: All instruments
50

Instrument Setup and Status
command: *RCL
syntax: *RCL<wsp><location>

description: The instrument setting is changed to one saved on the internal storage
device. Saved settings are in the form n.SET, so *RCL 2 recalls setting
SET2.SET.

parameters: a short value (between 0 and 5) giving the number of the setting to be
saved.

response: none
related commands *SAV

example: *RCL 3
affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
 51

Instrument Setup and Status
command: *RST
syntax: *RST

description: The ReSeT command *RST sets the instrument to reset setting (standard
setting) stored in internal storage.
Pending *OPC? actions are cancelled.
The instrument is placed in the idle state awaiting a command. The *RST
command clears the error queue.
The following are not changed:
 � Output queue
 � Service Request Enable register (SRE)
 � Standard Event Status Enable register (ESE)

The following parameters are reset

 � Start: 0 km (Auto)
 � Stop: 2 km (Auto) (Mini and Rack); 40 km (Auto) (Mainframe OTDR)
 � Pulsewidth: 1 µs (Auto)
 � First Wavelength: 1310 nm
 � Refractive Index, Scatter Coefficient: nominal for 1310 nm
 � Measurement Mode: Averaging
 � Averaging Time: 3 min (Mini and Rack); unlimited (Mainframe OTDR)
 � Optimize Mode: Standard
 � Data Points: 16000
 � Front Connector Threshold: -30 dB
 � Reflective Threshold: 0
 � Non-Reflective Threshold: 0
 � End Threshold: 5 dB (Mini and Rack); 3 dB (Mainframe OTDR)

parameters: none
response: none
example: *RST

affects: All instruments
52

Instrument Setup and Status
command: *SAV
syntax: *SAV<wsp><location>

description: With the SAVe command *SAV the instrument setting is stored on the
internal storage device. The instrument can store 4 settings, in locations 1 to
4. The scope of the saved setting is identical to the standard setting (see
*RST).
Settings are in the form n.SET, so *SAV 2 saves the current setting as
SET2.SET.

parameters: a short value (between 0 and 5) giving the number of the setting to be
saved.

related commands: *RCL
response: none
example: *SAV 3

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
 53

Instrument Setup and Status
command: *STB?
syntax: *STB?

description: The STatus Byte query *STB? returns the contents of the Status Byte
register.
The Master Summary Status (MSS) bit is true when any enabled bit of the
STB register is set (excluding Bit 6). The Status Byte register including, the
master summary bit, MSS, is not directly altered because of an *STB?
query.

parameters: none
response: The bit value for the register (a short value):

Bit Mnemonic Decimal Value
7 (MSB) Operation Status 128
6 Master Summary Status 64
5 Event Status Bit 32
4 Message Available 16
3 Questionable Status 8
2 Not used 0
1 Not used 0
0 (LSB) Laser Active Bit 1

example: *STB? → 1<END>
affects: All instruments

command: *TST?
syntax: *TST?

description: The self-TeST query *TST? makes the instrument perform a self-test and
place the results of the test in the output queue.
No further commands are allowed while the test is running. After the self-
test the instrument is returned to the setting that was active at the time the
self-test query was processed.

parameters: none
response: The sum of the results for the individual tests (a 32-bit signed integer

value):
example: *TST? → 0<END>

affects: All instruments
54

Instrument Setup and Status
command: *WAI
syntax: *WAI

description: The WAIt command *WAI prevents the instrument from executing any
further commands until the current command has finished executing. All
pending operations are completed during the wait period.

parameters: none
response: none
example: *WAI

affects: All instruments
 55

Instrument Setup and Status
3.2 Status Reporting � The STATus Subsystem

The Status subsystem allows you to return and set details from the
Status Model. For more details, see �HP/Agilent OTDR Status
Model� on page 23

command: STATus:OPERation[:EVENt]?
syntax: STATus:OPERation[:EVENt]?

description: Queries the operation event register
parameters: none

response: The bit value for the operation event register as a short value
(0 .. +32767)

example: stat:oper? → +0<END>
affects: All instruments

command: STATus:OPERation:CONDition?
syntax: STATus:OPERation:CONDition?

description: Queries the operation condition register
parameters: none

response: The bit value for the operation condition register as a short value
(0 .. +32767)

example: stat:oper:cond? → +16<END>
affects: All instruments

command: STATus:OPERation:ENABle
syntax: STATus:OPERation:ENABle<wsp><value>

description: Sets the operation enable mask for the event register
parameters: The bit value for the operation enable mask as a short value

(0 .. +32767)
response: none
example: stat:oper:enab 128

affects: All instruments
56

Instrument Setup and Status
command: STATus:OPERation:ENABle?
syntax: STATus:OPERation[:ENABle]?

description: Returns the operation enable mask for the event register
parameters: none

response: The bit value for the operation enable mask as a short value
(0 .. +32767)

example: stat:oper:enab? → +128<END>
affects: All instruments

command: STATus:POWer:ACDC?
syntax: STATus:POWer:ACDC?

description: Queries how the battery is powered.
parameters: none

response: AC, DC or CHARging
example: stat:pow:acdc? → AC<END>

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: STATus:POWer:CAPacity?
syntax: STATus:POWer:CAPacity?

description: Returns the power capacity of the battery.
parameters: none

response: percentage capacity of the battery
example: stat:pow:cap? → 75%<END>

affects: Mini-OTDR, Mini-FBL, and Rack OTDR
 57

Instrument Setup and Status
command: STATus:POWer:CURRent?
syntax: STATus:POWer:CURRent?

description: Returns the current of the battery in mA.
parameters: none

response: Battery current

NOTE If the battery is discharging, the returned value will be negative.

If the battery is charging, the returned value will be positive.

example: stat:pow:curr? → 200MA<END>
affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: STATus:POWer:REMain?
syntax: STATus:POWer:REMain?

description: Returns the operating time in minutes
parameters: none

response: Remaining time
example: stat:pow:rem? → 180MIN<END>

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: STATus:PRESet
syntax: STATus:PRESet

description: Resets both enable masks to 0.
parameters: none

response: none
example: stat:pres

affects: All instruments
58

Instrument Setup and Status
command: STATus:QUEStionable[:EVENt]?
syntax: STATus:QUEStionable[:EVENt]?

description: Queries the questionable event register
parameters: none

response: The bit value for the questionable event register as a short value
(0 .. +32767)

example: stat:ques? → +0<END>
affects: All instruments

command: STATus:QUEStionable:CONDition?
syntax: STATus:QUEStionable:CONDition?

description: Queries the condition register
parameters: none

response: The bit value for the questionable condition register as a short value
(0 .. +32767)

example: stat:ques:cond? → +8<END>
affects: All instruments

command: STATus:QUEStionable:ENABle
syntax: STATus:QUEStionable:ENABle<wsp><value>

description: Sets the questionable enable mask for the event register
parameters: The bit value for the questionable enable mask as a short value

(0 .. +32767)
response: none
example: stat:ques:enab 128

affects: All instruments
 59

Instrument Setup and Status
command: STATus:QUEStionable:ENABle?
syntax: STATus:QUEStionable[:ENABle]?

description: Returns the questionable enable mask for the event register
parameters: none

response: The bit value for the questionable enable mask as a short value
(0 .. +32767)

example: stat:ques:enab? → +128<END>
affects: All instruments
60

Instrument Setup and Status
3.3 Interface/Instrument Behaviour Settings �
The SYSTem Subsystem

The SYSTem subsystem lets you control the instrument�s serial
interface. You can also control some internal data (like date, time
zone, and so on)

command: SYSTem:BRIDge
syntax: SYSTem:BRIDge

description: Allows you to send and receive data from the instrument connected
to Serial1 to the instrument connected to Serial 2.
Data characters are passed between Serial 1 and Serial 2 until the
command #SCPI is detected.

parameters: none
response: none
example: syst:brid

affects: Rack OTDR only

command: SYSTem:COMMunicate:GPIB[:SELF]:ADDRess
syntax: SYSTem:COMMunicate:GPIB[:SELF]:ADDRess<wsp><value>

description: Sets the OTDR�s GPIB address.
parameters: Valid values for the address are 1 .. 32 (a short value).

response: none
example: syst:comm:gpib:addr 15

affects: Mainframe OTDR only
 61

Instrument Setup and Status
.
command: SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?

syntax: SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?
description: Queries the OTDR�s current GPIB address.
parameters: none

response: Possible values for the address are 1 .. 32 (a short value).
example: syst:comm:gpib:addr? → +15<END>

affects: Mainframe OTDR only

command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD
syntax: SYSTem:COMMunicate:SERial[:RECeive]:BAUD<wsp><value>

description: Sets the baud rate for the OTDR serial interface

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the baud rate for Serial 1 is set.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters: Valid baud rates are 1200, 2400, 9600, 19200,38400, 57600, 115200.
response: none
example: syst:comm:ser:baud 9600

affects: All instruments
62

Instrument Setup and Status

command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD?
syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:BAUD?

description: Returns the current baud rate for the OTDR serial interface

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the baud rate for Serial 1 is returned.

parameters: none
response: Possible baud rates are 1200, 2400, 9600, 19200, 38400, 57600,

115200
example: syst:comm:ser:baud? → +9600<END>

affects: All instruments

command: SYSTem:COMMunicate:SERial[:RECeive]:BITS
syntax: SYSTem:COMMunicate:SERial[:RECeive]:BITS<wsp><value>

description: Sets the number of data bits for the OTDR�s serial interface.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters: Valid numbers are 5 .. 8
response: none
example: syst:comm:ser:bits 6

affects: Mainframe OTDR only

command: SYSTem:COMMunicate:SERial[:RECeive]:BITS?
syntax: SYSTem:COMMunicate:SERial[:RECeive]:BITS?

description: Returns the number of data bits for the OTDR�s serial interface.
parameters: none

response: Possible numbers are 5 .. 8
example: syst:comm:ser:bits → +6<END>

affects: Mainframe OTDR only
 63

Instrument Setup and Status

command: SYSTem:COMMunicate:SERial:FEED

syntax: SYSTem:COMMunicate:SERial:FEED<wsp><command>
description: Send a command to the instrument connected to Serial 2
parameters: The command given as a text string in "".

response: none
example: syst:comm:ser:feed "init"

affects: Rack OTDR and Mainframe OTDR

command: SYSTem:COMMunicate:SERial:FEED?
syntax: SYSTem:COMMunicate:SERial:FEED?<wsp><query>

description: Send a query to the instrument connected to Serial 2
parameters: The query given as a text string in "".

response: none
example: syst:comm:ser:feed? "*idn?" → HP E6000 Mini-

Optical Time Domain Reflectometer Mainframe
0123456789, Module: ABCDE54321 SW_Rev 6.0<END>

affects: Rack OTDR only
64

Instrument Setup and Status
command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE
syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE<wsp>

<pace>
description: Sets the pace for the OTDR serial interface

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the pace for Serial 1 is set.

You cannot use this command with a Rack OTDR Option 006
(RS485), as this does not have hardware handshaking.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters: Valid values are NONE, HARDware, XONXoff.

NOTE XONX is only available with the Mainframe OTDR.
However, for binary disk transfers HARD is recommended, and
XONX is forbidden

response: none
example: syst:comm:ser:pace hard

affects: All instruments
 65

Instrument Setup and Status
command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE?
syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PACE?

description: Returns the pace for the OTDR serial interface

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the pace for Serial 1 is requested.

parameters: none
response: Possible values are NONE, HARDware, and XONXoff.

NOTE XONX is only available with the Mainframe OTDR.

example: syst:comm:ser:pace? → HARD<END>

affects: All instruments

command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity
[:TYPE]

syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity[:TYPE]<wsp>
<parity>

description: Sets the type of parity checking for the OTDR�s serial interface.

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity type for Serial 1 is set.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters: Valid values are NONE, ODD, EVEN.
response: none
example: syst:comm:ser:par odd

affects: All instruments
66

Instrument Setup and Status
command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity
[:TYPE]?

syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity[:TYPE]?
description: Returns the type of parity checking for the OTDR�s serial interface.

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity type for Serial 1 is requested.

parameters: none
response: Possible values are NONE, ODD, EVEN.
example: syst:comm:ser:par? → ODD<END>

affects: All instruments

command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity:
CHECk

syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity:CHECk<wsp>
<boolean>

description: Determines whether parity checking is enabled for the OTDR�s serial
interface.

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity for Serial 1 is checked.

parameters: Possible values are 0 and 1
response: none
example: syst:comm:ser:par:chec 1

affects: All instruments
 67

Instrument Setup and Status
command: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity
:CHECk?

syntax: SYSTem:COMMunicate:SERial[1|2][:RECeive]:PARity:CHECk?
description: Queries whether parity checking is enabled for the OTDR�s serial interface.

NOTE You can choose Serial 1 or 2 for the Rack OTDR only.
If you are using a Rack OTDR, and you do not specify a serial port
number, the parity checking state for Serial 1 is requested.

parameters: none
response: Possible values are 0: checking disabled

1: checking enabled
example: syst:comm:ser:par:chec? → 1<END>

affects: All instruments

command: SYSTem:COMMunicate:SERial:PORT?
syntax: SYSTem:COMMunicate:SERial:PORT?

description: Inquires the type of second serial port that is configured (Rack
OTDR only).

parameters: none
response: RS232 or RS485
example: syst:comm:ser:port? → RS485<END>

affects: Rack OTDR only

command: SYSTem:COMMunicate:SERial[:RECeive]:SBITS
syntax: SYSTem:COMMunicate:SERial[:RECeive]:SBITS<wsp><bits>

description: Sets the number of stop bits for the OTDR�s serial interface.

NOTE All changes take effect immediately. After this command, you
must reconfigure your RS232 to continue communication.

parameters: Valid numbers are ONE, ONEHalf, TWO
response: none
example: syst:comm:ser:sbit two

affects: Mainframe OTDR only
68

Instrument Setup and Status
command: SYSTem:COMMunicate:SERial[:RECeive]:SBITS?
syntax: SYSTem:COMMunicate:SERial[:RECeive]:SBITS?

description: Returns the number of stop bits for the OTDR�s serial interface.
parameters: none

response: Possible values are ONE, ONEHalf, TWO
example: syst:comm:ser:sbit? → TWO<END>

affects: Mainframe OTDR only

command: SYSTem:DATE
syntax: SYSTem:DATE<wsp><day>,<month>,<year>

description: Sets the OTDR�s internal date.
parameters: The date in the format day, month,year (short values)

response: none
example: syst:date 20,7,1995

affects: All instruments

command: SYSTem:DATE?
syntax: SYSTem:DATE?

description: Returns the OTDR�s internal date.
parameters: none

response: The date in the format day, month,year (short values)
example: syst:date? → +20,+7,+1995<END>

affects: All instruments
 69

Instrument Setup and Status
command: SYSTem:ERRor?
syntax: SYSTem:ERRor?

description: Returns the contents of the OTDR�s error queue. Removes the
returned entry from the queue.

parameters: none
response: The number of the latest error, and its meaning.
example: syst:err? → -113,"Undefined header"<END>

affects: All instruments

command: SYSTem:HELP?
syntax: SYSTem:HELP?<wsp><keyword>

description: Returns a help page corresponding to the specified keyword.
parameters: keyword given as a string in "". For example, "SYSTem",

"SOURce", "DISPlay", "IEEEcommon".
"" returns a list of valid keywords.

response: A Binary block containing the help page.
example: syst:help? "syst" → #3316[help_page]<END>
affects: All instruments
70

Instrument Setup and Status
command: SYSTem:KEY
syntax: SYSTem:KEY<wsp><code>

description: Simulates keystrokes on the OTDR�s frontpanel.
parameters: Valid key codes are as follows:

Mini-OTDR / Mini-FBL
0:Select key.
1:Run/Stop key.
2:Up key
3:Down key
4:Left key
5:Right key
6:Help key

Rack OTDR
0: Enter/Return
1: <f2>
2: Up arrow
3: Down arrow
4: Left arrow
5: Right arrow
6: <f1>

Mainframe OTDR
0: Enter (RPG-click)
1: Softkey 1 (topmost)
2: Softkey 2
3: Softkey 3
4: Softkey 4
5: Softkey 5
6: Softkey 6
7: Help
8: Zoom Horizontal Out
9: Zoom Vertical In
10: Zoom Vertical Out
11: Zoom Horizontal In
12: Next marker
13: Print
14: Full Trace
15: Save
16: Trace/Event
17: Around Marker
18: Auto
19: Run/Stop
20: Decrease Brightness
21: Increase Brightness

response: none
example: syst:key? 1<END>

affects: All instruments
 71

Instrument Setup and Status
command: SYSTem:KEY?
syntax: SYSTem:KEY?

description: Returns either the last keystroke entered on the OTDR frontpanel
(not possible on Mainframe OTDR), or the last keystroke emulated
by the SYSTem:KEY remote command (all instruments).

parameters: none
response: Valid key codes are as follows:

Mini-OTDR / Mini-FBL
0:Select key.
1:Run/Stop key.
2:Up key
3:Down key
4:Left key
5:Right key
6:Help key

Rack OTDR
0: Enter/Return
1: <f2>
2: Up arrow
3: Down arrow
4: Left arrow
5: Right arrow
6: <f1>

Mainframe OTDR
0: Enter (RPG-click)
1: Softkey 1 (topmost)
2: Softkey 2
3: Softkey 3
4: Softkey 4
5: Softkey 5
6: Softkey 6
7: Help
8: Zoom Horizontal Out
9: Zoom Vertical In
10: Zoom Vertical Out
11: Zoom Horizontal In
12: Next marker
13: Print
14: Full Trace
15: Save
16: Trace/Event
17: Around Marker
18: Auto
19: Run/Stop
20: Decrease Brightness
21: Increase Brightness

example: syst:key? → 1<END>
affects: All instruments
72

Instrument Setup and Status
command: SYSTem:PRESet
syntax: SYSTem:PRESet

description: Loads a predefined instrument setting that is also loaded on power
on.

parameters: none
response: none
example: syst:pres

affects: All instruments

command: SYSTem:SET
syntax: SYSTem:SET<wsp><setting>

description: Sets the specified instrument setting from a binary block.
parameters: binary block

response: none
example: syst:set binblock

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: SYSTem:SET?
syntax: SYSTem:SET?

description: Reads the complete instrument setting in a binary block. The binary
block can be directly stored as a setting file.

parameters: none
response: binary block
example: syst:set? → binblock

affects: All instruments
 73

Instrument Setup and Status
command: SYSTem:TIME
syntax: SYSTem:TIME<wsp><hour>,<minute>,<second>

description: Sets the OTDR�s internal time.
parameters: The time in the format hour,minute,second. Hours are counted 0...23

(short values).
response: none
example: syst:time 20,15,30

affects: All instruments

command: SYSTem:TIME?
syntax: SYSTem:TIME?

description: Returns the OTDR�s internal time.
parameters: none

response: The time in the format hour,minute,second. Hours are counted 0...23
(short values).

example: syst:time? → +20,+15,+30<END>
affects: All instruments

command: SYSTem:UPTime?
syntax: SYSTem:UPTime?

description: Returns the time (in seconds) since you switched on your OTDR.
parameters: none

response: The time in seconds (int32 value).
example: syst:upt? → 240<END>

affects: Mini-OTDR, Mini-FBL, and Rack OTDR
74

Instrument Setup and Status
command: SYSTem:VERSion?
syntax: SYSTem:VERSion?

description: Returns the SCPI revision to which the OTDR complies.
parameters: none

response: The revision year and number.
example: syst:vers? → 1995.0<END>

affects: All instruments
 75

Instrument Setup and Status
76

4

4 Operations on Traces and
Measurements

78

Operations on Traces
and Measurements

This chapter gives descriptions of commands that you can use when
taking traces and measurements from your OTDR. The commands
are split into the following separate subsystems:

 � Root level commands: general commands.

 � :PROGRAM/:CALCULATE: commands which execute tasks
or calculate values.

 � :SENSE: commands which control measurement parameters.

 � :SOURCE: commands which control the optical source and
markers.

 � :TRACE: commands which relate to the traces in the OTDR�s
memory.

Other commands are described in Chapter 3 �Instrument Setup and
Status�, and Chapter 5 �Mass Storage, Display, and Print
Functions�.

Operations on Traces and Measurements
4.1 Root Layer Commands

command: ABORt[1/2]
syntax: ABORt[1/2]

description: Stops a running measurement: abor or abor1: on the OTDR
abor2: on the Visual Fault Finder

NOTE You cannot use a Visual Fault Finder with a Mainframe OTDR.
This means that abor2 is not available.

parameters: none
response: none
example: abor

affects: All instruments

command: FETCh[:SCAlar]:POWer[:DC]?
syntax: FETCh[:SCALar]:POWer[:DC]?

description: Reads the current power meter value.

NOTE If the power meter is not running, a measurement is triggered.

parameters: none
response: The reference as a float value in dBm, W or dB.

NOTE If the reference state is absolute, units are dBm or W.
If the reference state is relative, units are dB.

example: fetc:pow? → +4DBM<END>
affects: Mini-OTDR, Mini-FBL, and Rack OTDR
 79

Operations on Traces and Measurements
command: INITiate[1|2][:IMMediate][:ALL]
syntax: INITiate[1|2][:IMMediate][:ALL]

description: Starts a measurement: init or init1: internal source
init2: power meter

NOTE You cannot use a Visual Fault Finder with a Mainframe OTDR.
This means that init2 is not available.

parameters: none
response: none
example: init

affects: All instruments

command: INITiate2[:IMMediate]:CONTinuous
syntax: INITiate2[:IMMediate]:CONTinuous<wsp><boolean>

description: Starts a power meter measurement.
parameters: A boolean value: 0 � single measurement made

1 � continuous measurement made
response: none
example: init2:cont 1

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: INITiate2[:IMMediate]:CONTinuous?
syntax: INITiate2[:IMMediate]:CONTinuous?

description: Queries whether power meter measurement is continuous
parameters: none

response: A boolean value: 0 � single measurement
1 � continuous measurement

example: init2:cont? → 1<END>
affects: Mini-OTDR, Mini-FBL, and Rack OTDR
80

Operations on Traces and Measurements
command: KEYBoard
syntax: KEYBoard

description: Allows the use of a terminal as an external keyboard
parameters: none

response: none
example: keyb

NOTE keyb allows you to add text from a terminal (for example, when
specifying the name of a file to be saved). To use this facility, you should
do the following:

1 Attach your OTDR to a terminal. In this context, a terminal is any
PC or palmtop running a terminal program. The terminal should
have its own keyboard.

 You can attach the terminal using an RS232 cable. For details of
attaching an RS232 cable to an OTDR, see the appropriate Guide.

2 Enter keyb from your terminal keyboard.

3 Enter text as required from your terminal keyboard. All text is
treated literally until you enter <CTRL>Z (ASCII character 26)
(see below).

4 To finish entering text, enter <CTRL>Z from your terminal
keyboard.

 For example, after [File]<Save As..>New Name, you see a keyboard on
the OTDR screen. Instead of using this keyboard you can enter the
following text from your terminal:

 keyb
T1.SOR
^Z

 This is the equivalent of entering T1.SOR from the screen keyboard.

affects: Mini-OTDR, Mini-FBL, and Rack OTDR
 81

Operations on Traces and Measurements
command: READ[:SCAlar]:POWer[:DC]?
syntax: READ[:SCALar]:POWer[:DC]?

description: Reads the current power meter value.

NOTE The power meter must be running for this command to be
effective

parameters: none
response: The reference as a float value in dBm, W or dB.

NOTE If the reference state is absolute, units are dBm or W.
If the reference state is relative, units are dB.

example: read:pow? → +4DBM<END>
affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: TRAFficdet
syntax: TRAFficdet<wsp><onoff>

description: Turn traffic detection on or off
parameters: ON: turn traffic detection on

OFF: turn traffic detection off.
response: none
example: traf on

affects: Mini-OTDR and Rack OTDR

command: TRAFficdet?
syntax: TRAFficdet?

description: Queries whether traffic detection is on or off
parameters: none

response: ON: traffic detection is on
OFF: traffic detection is off.

example: traf? → ON<END>
affects: Mini-OTDR and Rack OTDR
82

Operations on Traces and Measurements
4.2 Playing With Data � The PROGram and
CALCulate Subsystems

The PROGram and CALCulate subsystems allow you to execute
special tasks and calculating several loss and attenuation values

command: PROGram:EXPLicit:CHECk:LIMit
syntax: PROGram:EXPLicit:CHECk:LIMit<wsp><param><wsp><value>

description: Set the Pass/Fail test limits for the specified parameter.
parameters: Valid values are as follows.

Units
REFLective
NONReflective
ATTenuation
CONNector loss
LOSS
LENGTh
TOLerance
NEW events
SORT results

Units
mdB
mdB
mdB/km
mdB
mdB
mm
mm
0=off, non-zero=on
0=severity, 1=distance

Limit
10000 .. 65000
0 .. 5000
0 .. 5000
0 .. 5000
0 .. 50000
0 .. 500000000
0 .. 50000000

0 or 1
The units specified above are implied, so you may only enter a
positive integer within the specified limits.

NOTE For more information about the Pass/Fail test limits, please
consult the E6000C Mini-OTDR User�s Guide (English Agilent
Product number E6000-91031).

response: none
example: prog:expl:chec:lim refl 30000

affects: Mini-OTDR and Rack OTDR
 83

Operations on Traces and Measurements
.

command: PROGram:EXPLicit:CHECk:LIMit?
syntax: PROGram:EXPLicit:CHECk:LIMit?<wsp><param>

description: Query the Pass/Fail test limits for the specified parameter.
parameters: Valid units are: REFLective

NONReflective
ATTenuation
CONNector loss
LOSS
LENGTh
TOLerance
NEW events
SORT results

response: The units and limits as the same as for
PROGram:EXPLicit:CHECk:LIMit on page 83.

NOTE For more information about the Pass/Fail test limits, please
consult the E6000C Mini-OTDR User�s Guide (English Agilent
Product number E6000-91031).

example: prog:expl:chec:lim? refl→ -30000<END>
affects: Mini-OTDR and Rack OTDR
84

Operations on Traces and Measurements
command: PROGram:EXPLicit:EXECute
syntax: PROGram:EXPLicit:EXECute<wsp><task>

description: Allows executing special tasks on the OTDR.
parameters: A string specifying the task.

Currently only "scan" is valid on all instruments.
On the Mini-OTDR and Rack OTDR, you can also enter "check" to
start the Pass/Fail test.
Valid units are: SCAN: run a scan trace (not Mini-FBL)

CHECK: run a Pass/Fail Test (not Mini-FBL)
ORL?: inquire Optical Return Loss (not Mini-FBL)
TORL?: inquire Total ORL of a Link

NOTE Because this command does not accept character data, you must
put quotation marks around the parameter scan or check.

response: none
example: prog:expl:exec "scan"

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: PROGram:EXPLicit:NUMBer
syntax: PROGram:EXPLicit:NUMBer<wsp><type>,<value>

description: Sets the threshold.
parameters: REFLective, NONReflective, or END

threshold value (int32) in mdB

On the Mini-FBL, only END is valid.
response: none
example: prog:expl:numb refl, 60000

affects: All instruments
 85

Operations on Traces and Measurements
command: PROGram:EXPLicit:NUMBer?
syntax: PROGram:EXPLicit:NUMBer?<wsp><type>

description: Requests the threshold value.
parameters: REFLective, NONReflective, or END

On the Mini-FBL, only END is possible.
response: threshold value (int32) in mdB
example: prog:expl:numb? refl → 60000<END>

affects: All instruments

command: PROGram:EXPLicit:STATe
syntax: PROGram:EXPLicit:STATe<wsp>"scan",<boolean>

description: Allows terminating the currently running task
parameters: A boolean value: 0 � terminate the task

1 � no action
response: none
example: prog:expl:stat "scan",0

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: PROGram:EXPLicit:STATe?
syntax: PROGram:EXPLicit:STATe?<wsp>"scan"

description: Queries whether a task is still running.
parameters: none

response: A boolean value: 0 � task is not running
1 � task is still running

example: prog:expl:stat? "scan" → 1<END>
affects: All instruments
86

Operations on Traces and Measurements
command: CALCulate:MATH:EXPRession:NAME?
syntax: CALCulate:MATH:EXPRession:NAME?<wsp><expr>

description: Allows calculating several loss and attenuation values. All
calculations use the stretch between markers A and B.

parameters: Valid values are: LOSS
LSAattenuation
ATTenuation.
ORL: Optical Return Loss

response: The loss is returned in dB. The attenuations are returned in mdB/km.
example: calc:math:expr:name? att → 291MDB/KM<END>

affects: All instruments

command: CALCulate:MATH:EXPRession:REFLex?
syntax: CALCulate:MATH:EXPRessionREFLex?<wsp><pos1>,<pos2>,

<pos3>
description: Calculate the Reflectance of an event

NOTE The active marker must be at the position of the Event.

parameters: 3 aux marker positions with length unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.

response: reflectance or reflection height in dB

NOTE The type of measurement given (reflectance or reflection height)
depends on how you have configured your instrument.
You specify a new configuration with calc:math:expr:type.

example: calc:math:expr:refl? 9.5km,9800m,1001000cm →
-55.5000DB (Marker at 10km).

affects: All instruments
 87

Operations on Traces and Measurements
command: CALCulate:MATH:EXPRession:SPLice?
syntax: CALCulate:MATH:EXPRession:SPLice?<wsp><pos1>,<pos2>,

<pos3>,<pos4>
description: Calculate the splice loss of an event.

NOTE The active marker must be at the position of the splice.

parameters: 4 aux marker positions with length unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.

response: splice loss in mdB
example: calc:math:expr:spl? 9.5km,9800m,10500m,10.8km →

100MDB (Marker at 10km).
affects: All instruments

command: CALCulate:MATH:EXPRession:TYPE
syntax: CALCulate:MATH:EXPRession:TYPE<wsp><type>

description: Sets the reflection parameter used for the return value of
calc:math:expr:refl? and the event table (for example,
trac:data:tabl).

parameters: Valid values are: REFLectance and HEIGht.
response: none
example: calc:math:expr:type refl

affects: Mini-OTDR and Rack OTDR

command: CALCulate:MATH:EXPRession:TYPE?
syntax: CALCulate:MATH:EXPRession:TYPE?

description: Queries the reflection parameter used for the return value of
calc:math:expr:refl? and the event table (for example,
trac:data:tabl).

parameters: none
response: REFL or HEIG
example: calc:math:expr:type → REFL<END>

affects: Mini-OTDR and Rack OTDR
88

Operations on Traces and Measurements
4.3 Measurement Functions � The SENSe
Subsystem

The SENSe subsystem lets you control measurement parameters
like the averaging time, the detector�s bandwidth, and fiber
parameters.

command: SENSe:AVERage:COUNt
syntax: SENSe:AVERage:COUNt<wsp><value>

description: Sets the averaging time.
parameters: Averaging time in seconds (a short value).

A value of 0 means that the measurement runs until it is stopped by
the user.

response: none
example: sens:aver:coun 180

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: SENSe:AVERage:COUNt?
syntax: SENSe:AVERage:COUNt?<wsp><boolean>

description: Queries the averaging time.
parameters: A boolean value: 0 � returns averaging time

1 � returns time elapsed since start of measurement.
response: Averaging time in seconds (a short value).

NOTE If your instrument is configured to measure Number of Averages,
rather than Averaging Time, you receive a response of 0.
Use sens:aver:coun to configure your instrument for
Averaging Time (Mini-OTDR only).

example: sens:aver:coun? 0 → +180<END>
affects: All instruments
 89

Operations on Traces and Measurements
command: SENSe:AVERage:COUNt:NUMBer
syntax: SENSe:AVERage:COUNt:NUMBer<wsp><value>

description: Sets the number of averages to measure.
parameters: Number of averages as a power of 2 (a short value).

For example, if you enter 14, 214 averages are taken.
A value of 0 means that the measurement runs until it is stopped by
the user.

NOTE You may only enter 0 or an integer between 14 and 22.

response: none
example: sens:aver:coun:numb 14

affects: Mini-OTDR and Rack OTDR

command: SENSe:AVERage:COUNt:NUMBer?
syntax: SENSe:AVERage:COUNt?<wsp><boolean>

description: Queries the number of averages measured.
parameters: A boolean value: 0 � returns averaging time

1 � returns time elapsed since start of measurement.
response: Number of averages as a power of 2 (a short value).

For example, if you see 14, the instrument is configured to take 214
averages.

NOTE If your instrument is configured to measure Averaging Time,
rather than Number of Averages, you receive a response of 0.
Use sens:aver:coun:numb to configure your instrument for
Number of Averages.

example: sens:aver:coun? 0 → 14<END>
affects: Mini-OTDR and Rack OTDR
90

Operations on Traces and Measurements
command: SENSe:DETector[:FUNCtion]
syntax: SENSe:DETector[:FUNCtion]<wsp><mode>

description: Sets the current measurement mode.
parameters: Valid modes are: AVERage

REAL time (not Mini-FBL)
CONTinue (not Mini-FBL)
CW
RETLoss (Mainframe OTDR only)
M2kHz (not Mainframe OTDR)

response: none
example: sens:det aver

affects: All instruments

command: SENSe:DETector[:FUNCtion]?
syntax: SENSe:DETector[:FUNCtion]?

description: Returns the current measurement mode.
parameters: none

response: Possible responses are: AVERage
REAL time (not Mini-FBL)
CONTinue (not Mini-FBL)
CW
RETLoss (Mainframe OTDR only)
M2kHz (not Mainframe OTDR)

example: sens:det? → AVER<END>
affects: All instruments
 91

Operations on Traces and Measurements
command: SENSe:DETector[:FUNCtion:]AUTO
syntax: SENSe:DETector[:FUNCtion]:AUTO<wsp><boolean>

description: Enables or disables the automatic measurement mode.
parameters: A boolean value: 0 � disable auto mode

1 � enable auto mode
response: none
example: sens:det:auto 1

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: SENSe:DETector[:FUNCtion:]AUTO?
syntax: SENSe:DETector[:FUNCtion]:AUTO?

description: Queries whether the automatic measurement mode is enabled.
parameters: none

response: A boolean value: 0 � auto mode disabled
1 � auto mode enabled

example: sens:det:auto? → 1<END>
affects: All instruments

command: SENSe:DETector[:FUNCtion:]OPTimize
syntax: SENSe:DETector[:FUNCtion]:OPTimize<wsp><mode>

description: Sets the optimization mode
parameters: Valid modes are: NONE � standard optimization

RESolution � optimize for resolution
DYNamic � optimize for dynamic
LINearity - optimize for linearity (Mainframe
OTDR only)

response: none
example: sens:det:opt res

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
92

Operations on Traces and Measurements
command: SENSe:DETector[:FUNCtion:]OPTimize?
syntax: SENSe:DETector[:FUNCtion]:OPTimize?

description: Returns the current optimization mode.
parameters: none

response: Possible modes are NONE � standard optimization
RESolution � optimize for resolution
DYNamic � optimize for dynamic
LINearity - optimize for linearity (Mainframe
OTDR only)

example: sens:det:opt? → RES<END>
affects: All instruments

command: SENSe:DETector:MODE
syntax: SENSe:DETector:MODE<wsp><mode>

description: Selects the mode of the OTDR screen
parameters: Valid modes are: OTDR � OTDR mode

BREAK � Fiber Break Locator
SOURce � Source mode

response: none
example: sens:det:mode otdr

affects: Mini-OTDR and Rack OTDR

command: SENSe:DETEctor:MODE?
syntax: SENSe:DETector:MODE?

description: Returns the current mode of the OTDR
parameters: none

response: Possible modes are OTDR, BREAK, SOUR
example: sens:det:mode → OTDR<END>

affects: Mini-OTDR, Mainframe OTDR, and Rack OTDR
 93

Operations on Traces and Measurements
command: SENSe:DETector:SAMPle:DISTance?
syntax: SENSe:DETector:SAMPle:DISTance?

description: Queries the current sample distance.
parameters: none

response: The sample distance in mm.
example: sens:samp:dist? → +4600<END>

affects: All instruments

command: SENSe:FIBer:REFRindex
syntax: SENSe:FIBer:REFRindex<wsp><value>

description: Sets the fiber�s refractive index.
parameters: The refractive index (a float value).

response: none
example: sens:fib:refr 1.458

affects: All instruments

command: SENSe:FIBer:REFRindex?
syntax: SENSe:FIBer:REFRindex?

description: Returns the current refractive index.
parameters: none

response: The refractive index (a float value).
example: sens:fib:refr? → +1.4580000<END>

affects: All instruments
94

Operations on Traces and Measurements
command: SENSe:FIBer:SCATtercoeff
syntax: SENSe:FIBer:SCATtercoeff<wsp><value>[dB|mdB]

description: Sets the fiber�s scatter coefficient.
parameters: The scatter coefficient in mdB (default) or dB (a float value).

response: none
example: sens:fib:scat 51500mdb

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: SENSe:FIBer:SCATtercoeff?
syntax: SENSe:FIBer:SCATtercoeff?

description: Returns the current scatter coefficient.
parameters: none

response: The scatter coefficient in dB (a float value).
example: sens:fib:scat? → +51.500DB<END>

affects: All instruments

command: SENSe:FIBer:TYPE?
syntax: SENSe:FIBer:TYPE?

description: Queries the fiber type of the measurement module.
parameters: none

response: Possible values are: MONomode
MULTimode

example: sens:fib:type? → MULT<END>
affects: All instruments
 95

Operations on Traces and Measurements
command: SENSe:POWer:FREQuency?
syntax: SENSe:POWer:FREQuency?

description: Queries the detected power meter input frequency.
parameters: none

response: Valid responses are: CW, LI, and the current frequency in Hz or KHz
example: sens:pow:freq? → 270HZ<END>

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: SENSe:POWer:REFerence
syntax: SENSe:POWer:REFerence<wsp><value>

[pW|nW|uW|mW|Watt|dBm]
description: Sets the power meter reference value
parameters: The reference as a float value. You may append a unit type.

Valid units are: pW, nW, uW, mW, Watt, and dBm.
If no unit type is specified, dBm is implied.

response: none
example: sens:pow:ref 4dBm

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: SENSe:POWer:REFerence?
syntax: SENSe:POWer:REFerence?

description: Queries the power meter reference value and units
parameters: none

response: The reference as a float value in dBm, W or dB.

NOTE If the reference state is relative, units are dBm or W.
If the reference state is absolute, units are dB

example: sens:pow:ref? → +4DBM<END>
affects: Mini-OTDR, Mini-FBL, and Rack OTDR
96

Operations on Traces and Measurements
command: SENSe:POWer:REFerence:DISPlay
syntax: SENSe:POWer:REFerence:DISPlay

description: Takes the current power meter value as the reference value
parameters: none

response: none
example: sens:pow:ref:disp

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: SENSe:POWer:REFerence:STATe
syntax: SENSe:POWer:REFerence:STATe<wsp><boolean>

description: Sets the power meter display to relative or absolute
parameters: A boolean value: 0 � relative

1 - absolute
response: none
example: sens:pow:ref:stat 1

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: SENSe:POWer:REFerence:STATe?
syntax: SENSe:POWer:REFerence:STATe?

description: Inquires whether the current power meter display is relative or
absolute

parameters: none
response: A boolean value: 0 � relative

1 - absolute
example: sens:pow:ref:stat? → 1<END>

affects: Mini-OTDR, Mini-FBL, and Rack OTDR
 97

Operations on Traces and Measurements
command: SENSe:POWer:UNIT
syntax: SENSe:POWer:UNIT<wsp><boolean>

description: Sets the power meter power unit
parameters: A boolean value: 0 � dBm

1 - Watt
or DBM or W

response: none
example: sens:pow:unit 1

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: SENSe:POWer:UNIT?
syntax: SENSe:POWer:UNIT?

description: Inquires the current power meter power unit
parameters: none

response: DBM or W
example: sens:pow:unit? → W<END>

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: SENSE:POWer:WAVelength
syntax: SENSE:POWer:WAVelength<wsp><value>[NM | UM | MM | M]

description: Sets the current power meter wavelength.
parameters: The wavelength as a float value in nm/um/mm/m.

response: none
example: sens:pow:wav 1550E-3um

affects: Mini-OTDR, Mini-FBL, and Rack OTDR
98

Operations on Traces and Measurements
command: SENSE:POWer:WAVelength?
syntax: SENSE:POWer:WAVelength?

description: Inquires the current power meter wavelength.
parameters: none

response: The wavelength as a float value in nm.
example sens:pow:wav? → +1550NM<END>
affects: Mini-OTDR, Mini-FBL, and Rack OTDR
 99

Operations on Traces and Measurements
4.4 Signal Generation � The SOURce Subsystem

The SOURce subsystem allows controlling the OTDR�s optical
source. It also controls positions and appearance of the markers

command: [SOURce:]AM[:INTernal]:FREQuency[1]
syntax: [SOURce:]AM[:INTernal]:FREQency[1]<wsp><freq>

description: Sets the modulation frequency of the internal source
parameters: Valid units are: CW, F270HZ, F1KHZ, F2KHZ, and CODE

response: none
example: am:freq f270hz

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: [SOURce:]AM[:INTernal]:FREQuency[1]?
syntax: [SOURce:]AM[:INTernal]:FREQency[1]?

description: Queries the current modulation frequency of the internal source
parameters: none

response: Valid units are: CW, F270HZ, F1KHZ, F2KHZ, and CODE
example: am:freq? → F270HZ<END>

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: [SOURce:]AM[:INTernal]:FREQuency2
syntax: [SOURce:]AM[:INTernal]:FREQency2<wsp><freq>

description: Sets the modulation frequency of the Visual Fault Finder
parameters: Valid units are: CW and F1HZ

response: none
example: am:freq2 f1hz

affects: Mini-OTDR, Mini-FBL, and Rack OTDR
100

Operations on Traces and Measurements
.

command: [SOURce:]AM[:INTernal]:FREQuency2?
syntax: [SOURce:]AM[:INTernal]:FREQency2?

description: Queries the current modulation frequency of the Visual Fault Finder
parameters: none

response: Valid units are: CW and F1HZ
example: am:freq2? → F1HZ<END>

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: [SOURce:]HOFFset
syntax: [SOURce:]HOFFset<wsp><value>[MM | CM | M | KM | MI | FT |

KFT]
description: Sets the horizontal offset.
parameters: The offset as a float value. You may append a length unit.

Valid length units are: MM, CM, M, KM, MI, FT, KFT.

NOTE A value of 0 clears the horizontal offset.

response: none
example: hoff 5km

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: [SOURce:]HOFFset?
syntax: [SOURce:]HOFFset?

description: Returns the current horizontal offset.
parameters: none

response: The offset as a float value in the current length unit.
example: hoff? → +5.0000000KM<END>

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
 101

Operations on Traces and Measurements
command: [SOURce:]MARKer1|2|3:POINt
syntax: [SOURce:]MARKer1|2|3:POINt<wsp><position>[length unit]

description: Sets the position of the selected marker (MARK1 = marker A,
MARK2 = marker B, MARK3 = marker C).

NOTE The Mini-OTDR and Rack OTDR have no Marker C.
MARK3 is therefore only valid for the Mainframe OTDR.

parameters: Position in length unit.
response: none
example: mark2:poin 1000m

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: [SOURce:]MARKer1|2|3:POINt?
syntax: [SOURce:]MARKer1|2| 3:POINt?

description: Returns the position of the selected marker (MARK1 = marker A,
MARK2 = marker B, MARK3 = marker C).

NOTE The Mini-OTDR and Rack OTDR have no Marker C.
MARK3 is therefore only valid for the Mainframe OTDR.

parameters: none
response: Position in length unit.
example: mark2:poin? → +1KM <END>

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
102

Operations on Traces and Measurements
command: [SOURce:]MARKer1|2|3 [:STATe]
syntax: [SOURce:]MARKer1|2|3[:STATe]<wsp><boolean>

description: Activates or disables the selected marker (MARK1 = marker A,
MARK2 = marker B, MARK3 = marker C).

NOTE The Mini-OTDR and Rack OTDR have no Marker C.
MARK3 is therefore only valid for the Mainframe OTDR.

parameters: A boolean value: 0 � disables marker
1 � enables marker

response: none
example: mark2 1

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: [SOURce:]MARKer1|2|3[:STATe]?
syntax: [SOURce:]MARKer1|2|3[:STATe]?

description: Queries the state of the selected marker (MARK1 = marker A,
MARK2 = marker B, MARK3 = marker C).

NOTE The Mini-OTDR and Rack OTDR have no Marker C.
MARK3 is therefore only valid for the Mainframe OTDR.

parameters: none
response: A boolean value: 0 � marker disabled

1 � marker enabled
example: mark2? → 1<END>

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
 103

Operations on Traces and Measurements
command: [SOURce:]POWer:STATe[1|2]
syntax: [SOURce:]POWer:STATe[1|2]

description: Switches the laser of the chosen source on or off:
stat or stat1: internal source (default)
stat2: Visual Light Source

parameters: A boolean value: 0 � Laser Off
1 - Laser On

response: none
example: pow:stat 1

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: [SOURce:]POWer:STATe[1|2]?
syntax: [SOURce:]POWer:STATe[1|2]?

description: Queries the laser state of the chosen source:
stat or stat1: internal source (default)
stat2: Visual Light Source

parameters: none
response: A boolean value: 0 � Laser Off

1 - Laser On
example: pow:stat → 1<END>

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: [SOURce:]PULSe:WIDTh
syntax: [SOURce:]PULSe:WIDTh<wsp><value>[NS|US|MS|S]

description: Sets the measurement pulsewidth.
parameters: The pulsewidth in ns/us (a float value).

response: none
example: puls:widt 3000E-9s

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
104

Operations on Traces and Measurements
command: [SOURce:]PULSe:WIDTh?
syntax: [SOURce:]PULSe:WIDTh?

description: Returns the measurement pulsewidth.
parameters: none

response: The pulsewidth in ns/us (a short value).
example: puls:widt? → 3US<END>

affects: All instruments

command: [SOURce:]PULSe:WIDTh:LLIMit?
syntax: [SOURce:]PULSe:WIDTh:LLIMit?

description: Returns the lower limit for the pulsewidth determined by the
measurement hardware.

parameters: none
response: The pulsewidth in ns/us (a short value).
example: puls:widt:llim? → +10NS<END>

affects: All instruments

command: [SOURce:]PULSe:WIDTh:ULIMit?
syntax: [SOURce:]PULSe:WIDTh:ULIMit?

description: Returns the upper limit for the pulsewidth determined by the
measurement hardware.

parameters: none
response: The pulsewidth in ns/us (a short value).
example: puls:widt:ulim? → +10US<END>

affects: All instruments
 105

Operations on Traces and Measurements
command: [SOURce:]RANGe:LUNit
syntax: [SOURce:]RANGe:LUNit<wsp><unit>

description: Sets the length unit.
parameters: Valid units are: M � meters

FT � feet
MI � miles

response: none
example: rang:lun m

affects: All instruments

command: [SOURce:]RANGe:LUNit?
syntax: [SOURce:]RANGe:LUNit?

description: Queries the current length unit.
parameters: none

response: Valid units are: M � meters
FT � feet
MI � miles

example: rang:lun? → M<END>
affects: All instruments

command: [SOURce:]RANGe:SPAN
syntax: [SOURce:]RANGe:SPAN<wsp><value>[MM | CM | M | KM | MI |

FT | KFT]
description: Sets the measurement span.
parameters: The span as a float value. You may append a length unit.

Valid length units are: MM, CM, M, KM, MI, FT, KFT.
response: none
example: rang:span 50mi

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
106

Operations on Traces and Measurements
command: [SOURce:]RANGe:SPAN?
syntax: [SOURce:]RANGe:SPAN?

description: Returns the current measurement span.
parameters: none

response: The span as a float value in the current length unit.
example: rang:span? → +80.4670000KM<END>

affects: All instruments

command: [SOURce:]RANGe:STARt
syntax: [SOURce:]RANGe:STARt<wsp><value>[MM | CM | M | KM | MI |

FT | KFT]
description: Sets the starting point for the measurement.
parameters: The start as a float value. You may append a length unit.

Valid length units are: MM, CM, M, KM, MI, FT, KFT.
response: none
example: rang:star 10km

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: [SOURce:]RANGe:STARt?
syntax: [SOURce:]RANGe:STARt?

description: Returns the current starting point for the measurement.
parameters: none

response: The start as a float value in the current length unit.
example: rang:star? → 10.0000000KM<END>

affects: All instruments
 107

Operations on Traces and Measurements
command: [SOURce:]WAVelength[1|2][:CW]
syntax: [SOURce:]WAVelength[1|2][:CW]<wsp><value>[NM | UM | MM | M]

description: Sets the wavelength for the specified source:
wav or wav1: internal source (default)
wav2: Visual Light source

NOTE wav2 is only included for the sake of consistency. You will never
want to set the Visual Light Source wavelength

NOTE You cannot use a submodule with an Mainframe OTDR.
This means that wav2 is unavailable.

parameters: The wavelength as a float value in nm/um/mm/m.
response: none
example: wav 1550E-3um

affects: All instruments

command: [SOURce:]WAVelength[1|2][:CW]?
syntax: [SOURce:]WAVelength[1:2][:CW]?

description: Inquires the wavelength for the specified source:
WAVelength or WAVelength1: internal source (default)
WAVelength2: Visual Light source

NOTE You cannot use a submodule with an Mainframe OTDR.
This means that wav2 is unavailable.

parameters: none
response: The wavelength as a float value in nm.
example: wav? → +1550NM<END>

affects: All instruments
108

Operations on Traces and Measurements
command: [SOURce:]WAVelength[1|2][:CW]:AVAilable?
syntax: [SOURce:]WAVelength[1|2][:CW]:AVAilable?

description: Returns the wavelengths for the specified source:
wav or wav1: internal source (default)
wav2: Visual Light source

NOTE You cannot use a submodule with an Mainframe OTDR.
This means that wav2:ava? is unavailable.

parameters: The wavelengths as float values separated by commas.
response: none
example: wav:ava? → 1310,1550<END>

affects: All instruments
 109

Operations on Traces and Measurements
4.5 Trace Data Access � The TRACe Subsystem

The TRACe subsystem lets you control the traces loaded into the
OTDR�s memory.

command: TRACe:CATalog?
syntax: TRACe:CATalog?

description: Returns the names of the currently loaded traces and their positions
in the trace array.
There is a maximum of two loaded traces for the Mini-OTDR and
Rack OTDR, and four loaded traces for the Mainframe OTDR.

parameters: none
response: A string terminated by <END>.
example: trac:cat? → "1:TRACE1.SOR 2:TRACE2.SOR"<END>

affects: All instruments
110

Operations on Traces and Measurements
command: TRACe:DATA?
syntax: TRACe:DATA?

description: Reads a complete trace data array for the current trace.
parameters: none

response: The data is a Binary Block containing the trace data.

NOTE TRAC:DATA? returns blocks of unsigned short (16-bit) data in
Intel little endian byte ordering (low byte first).

Some processor architectures (such as HP PA-Risc or Motorola)
use big endian byte order (high byte first).

If your processor uses big endian byte order, you must swap the
low and high byte for each 16 bit value.

If you are not sure about the byte ordering technique used by your
processor, please consult your processor documentation.

example: trac:data? → #48192[..8192 bytes of data..]<END>
affects: All instruments

command: TRACe:DATA:CHECk:TABLe?
syntax: TRACe:DATA:CHECk:TABLe?

description: Returns the Pass/Fail test Checker Table.
parameters: none.

response: Block containing the Pass/Fail test table. The header is the same as a
binary, but the data is in ASCII format.

example: trac:data:chec:tabl? → block<END>
affects: Mini-OTDR and Rack OTDR
 111

Operations on Traces and Measurements
command: TRACe:DATA:CHECk:STATe?
syntax: TRACe:DATA:CHECk:STATe?

description: Returns the current Pass/Fail test state.
parameters: none

response: Possible values
are:

INVALID
PASSED
FAILED

example: trac:data:chec:stat? → PASSED<END>
affects: Mini-OTDR and Rack OTDR

command: TRACe:DATA:FCRetloss?
syntax: TRACe:DATA:FCRetloss?

description: Returns the Front connector Return Loss
parameters: none

response: Return loss in dB.
example: trac:data:fcr? → -35723MDB<END>

affects: All instruments

command: TRACe:DATA:LANDmark:ADD
syntax: TRACe:DATA:LANDmark:ADD<wsp><value>[MM | CM | M |

KM | MI | FT | KFT],<comm>
description: Adds a landmark.
parameters: <value>

<comm>

The landmark position as a float value. You may append
a length unit. Valid length units are: MM, CM, M, KM,
MI, FT, KFT.
Landmark name, given as a string in " " (max. 40
characters)

response: none
example: trac:data:land:add 2km,"Landmark A"

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
112

Operations on Traces and Measurements
command: TRACe:DATA:LANDmark:DELete
syntax: TRACe:DATA:LANDmark:DELete<wsp><value>[MM | CM | M |

KM | MI | FT | KFT]
description: Deletes a landmark.
parameters: The landmark position as a float value. You may append a length

unit.
Valid length units are: MM, CM, M, KM, MI, FT, KFT.

response: none
example: trac:data:land:del 2km

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
 113

Operations on Traces and Measurements
command: TRACe:DATA:LINE?
syntax: TRACe:DATA:LINE?<wsp><start>,<range>,<width>,<minmax>

description: Starting at sample start, examines the next width samples, and
notes their minimum/maximum value. (minmax determines whether
it is MIN or MAX).
Repeats this for range samples, and stores the resulting line in a
binary block.

parameters: start (int32) - starting point from which samples are taken.
range (int32) - number of separate samples analyzed,
width (int32) - number of points in each sample.
For an illustration of the interpretation of the parameters, see the
diagram below:

NOTE start + (range*width) must be less than the number of data
points

range must be greater than or equal to 4

width must be greater than 0

minmax - MIN: minimum value is taken
MAX: maximum value is taken

response: binary block
114

Operations on Traces and Measurements
NOTE TRAC:DATA:LINE? returns blocks of unsigned short (16-bit)
data in Intel little endian byte ordering (low byte first).

Some processor architectures (such as HP PA-Risc or Motorola)
use bug endian byte order (high byte first).

If your processor uses big endian byte order, you must swap the
low and high byte for each 16 bit value.

If you are not sure about the byte ordering technique used by your
processor, please consult your processor documentation.

example: trac:data:line? 2,5,2,MAX→ block
affects: All instruments

command: TRACe:DATA:TABLe?
syntax: TRACe:DATA:TABLe?

description: Returns an event table.
parameters: none.

response: Block containing the event table. The header is the same as a binary,
but the data is in ASCII format.

example: trac:data:tabl? → block
affects: All instruments

command: TRACe:DATA:TABLe:LOCK
syntax: TRACe:DATA:TABLe:LOCK<wsp><boolean>

description: Locks/Unlocks the event table
parameters: A boolean value: 0: table unlocked

1: table locked
response: none
example: trac:data:tabl:lock 0

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
 115

Operations on Traces and Measurements
command: TRACe:DATA:TABLe:LOCK?
syntax: TRACe:DATA:TABLe:LOCK?

description: Returns whether the event table is locked.
parameters: none.

response: A boolean value: 0: table unlocked
1: table locked

example: trac:data:tabl:lock? → 0<END>
affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: TRACe:DATA:TORL?
syntax: TRACe:DATA:TORL?

description: Returns the Total Optical Return Loss
parameters: none

response: Return loss in dB.
example: trac:data:torl? → +35.7DB<END>

affects: All instruments

command: TRACe:DATA:VALue?
syntax: TRACe:DATA:VALue?<wsp><sample point>

description: Returns the measured value at the specified sample point.

NOTE The maximum value of <sample point> is determined by
trac:poin?

parameters: The sample point.
response: The measured value in mdB.
example: trac:data:val? 1999 → +31800<END>

affects: All instruments
116

Operations on Traces and Measurements
command: TRACe:DELete
syntax: TRACe:DELete

description: Closes the current trace.
parameters: none

response: none
example: trac:del

affects: All instruments

command: TRACe:DELete:ALL
syntax: TRACe:DELete:ALL

description: Closes all loaded traces.
parameters: none

response: none
example: trac:del:all

affects: All instruments

command: TRACe:FEED:CONTrol
syntax: TRACe:FEED:CONTrol<wsp><trace>

description: Specifies the current trace.

NOTE The current trace receives all measurement data and therefore
will be overwritten with every new measurement

parameters: Valid values are: FIRSt
SECond
THIRd (Mainframe OTDR only)
FOURth (Mainframe OTDR only)

response: none
example: trac:feed:cont sec

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
 117

Operations on Traces and Measurements
command: TRACe:FEED:CONTrol?
syntax: TRACe:FEED:CONTrol?

description: Returns the current trace.
parameters: none

response: Possible values
are:

FIRSt
SECond
THIRd (Mainframe OTDR only)
FOURth (Mainframe OTDR only)

example: trac:feed:cont? → SEC<END>
affects: All instruments

command: TRACe:FREE?
syntax: TRACe:FREE?

description: Returns the number of unused trace array fields.
parameters: none

response: A short value: 0...2.(0...4 for the Mainframe OTDR)
example: trac:free? → +2<END>

affects: All instruments

command: TRACe:POINts
syntax: TRACe:POINts

description: Sets the maximum number of samples for the current trace.
parameters: The number of data points (a short value).

Valid arguments are 4000, 8000, and 16000.
response: none
example: trac:poin 8000

affects: Mini-OTDR and Rack OTDR
118

Operations on Traces and Measurements
command: TRACe:POINts?
syntax: TRACe:POINts?

description: Returns the number of trace data points for the current trace.
parameters: none

response: The number of data points (a short value).
example: trac:poin? → +8192<END>

affects: All instruments
 119

Operations on Traces and Measurements
120

5

5 Mass Storage, Display, and
Print Functions

122

Mass Storage, Display,
and Print Functions

This chapter gives descriptions of commands that you can use when
storing and printing traces from your OTDR. The commands are
split into the following separate subsystems:

 � :DISPLAY: commands which relate to what you see on the
OTDR display.

 � :HCOPY: commands which relate to printing operations.

 � :MMEMORY: commands which relate to the OTDR memory.

Other commands are described in Chapter 3 �Instrument Setup and
Status�, and Chapter 4 �Operations on Traces and Measurements�.

Mass Storage, Display, and Print Functions
5.1 Display Operations � The DISPlay Subsystem

The DISPlay subsystem lets you control what you see on the
OTDR�s display.

command: DISPlay:BRIGhtness
syntax: DISPlay:BRIGhtness<wsp><value>

description: Controls the brightness for the display.
parameters: 0 .. 100 (0 ..64 on the Mainframe OTDR)

response: none
example: disp:brig 32

affects: All instruments

command: DISPlay:BRIGhtness?
syntax: DISPlay:BRIGhtness?

description: Requests the brightness for the display.
parameters: none

response: 0 .. 100 (0 ..64 on the Mainframe OTDR)
example: disp:brig? → 32<END>

affects: All instruments

command: DISPlay:CONTrast
syntax: DISPlay:CONTrast<wsp><value>

description: Controls the contrast for the display.
parameters: 0 .. 100

response: none
example: disp:cont 50

affects: Mini-OTDR and Mini-FBL
 123

Mass Storage, Display, and Print Functions
command: DISPlay:CONTrast?
syntax: DISPlay:CONTrast?

description: Requests the contrast for the display.
parameters: none

response: 0 .. 100
example: disp:cont? → 50<END>

affects: Mini-OTDR and Mini-FBL

command: DISPlay:ENABle
syntax: DISPlay:ENABle<wsp><boolean>

description: Enables or disables the LCD.
parameters: A boolean value: 0 � switch off the LCD

1 � switch on the LCD
response: none
example: disp:enab 1

affects: All instruments

command: DISPlay:ENABle?
syntax: DISPlay:ENABle?

description: Queries the state of the LCD.
parameters: none

response: A boolean value: 0 � the LCD is turned off
1 � the LCD is turned on

example: disp:enab? → 1<END>
affects: All instruments
124

Mass Storage, Display, and Print Functions
command: DISPlay[:WINDow]:GRAPhics:COLor
syntax: DISPlay[:WINDow]:GRAPhics:COLor<wsp><color>

description: Changes the color of the current trace.
parameters: The new trace color (a short value):

BLACk, RED, BLUE, GREen, GREY, WHITe
response: none
example: disp:grap:col blac

affects: Mainframe OTDR only

command: DISPlay[:WINDow]:GRAPhics:COLor?
syntax: DISPlay[:WINDow]:GRAPhics:COLor?

description: Queries the color of the current trace.
parameters: none

response: The current trace color (a short value):
BLAC, RED, BLUE, GRE, GREY, WHIT

example: DISPlay[:WINDow]:GRAPhics:COLor?
affects: Mainframe OTDR only

command: DISPlay[:WINDow]:GRAPhics:LTYPe
syntax: DISPlay[:WINDow]:GRAPhics:LTYPe<wsp><boolean>

description: Changes the linestyle of the current trace.
parameters: A boolean value: 0 � new linestyle is dotted

1 � new linestyle is solid
response: none
example: disp:grap:ltyp 0

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR
 125

Mass Storage, Display, and Print Functions
command: DISPlay[:WINDow]:GRAPhics:LTYPe?
syntax: DISPlay[:WINDow]:GRAPhics:LTYPe?

description: Queries the linestyle of the current trace.
parameters: none

response: A boolean value: 0 � current linestyle is dotted
1 � current linestyle is solid

example: disp:grap:ltyp? → 0<END>
affects: All instruments

command: DISPlay[:WINDow]:TEXT:DATA
syntax: DISPlay[:WINDow]:TEXT:DATA<wsp><c-no>,<comm>

description: Sets a comment in the trace.
parameters: <c-no> 0 .. 4 - comment number

<comm> Comment, given as a string in " " (max. 40 characters)
response: none
example: disp:text:data 0,"This is a Comment"

affects: All instruments

command: DISPlay[:WINDow]:TEXT:DATA?
syntax: DISPlay[:WINDow]:TEXT:DATA? <wsp><c-no>

description: Requests an individual comment
parameters: 0 .. 4 - comment number

response: Comment, given as a string, terminated by <END>
example: disp:text:data? 0 → "This is a Comment"<END>

affects: All instruments
126

Mass Storage, Display, and Print Functions
command: DISPlay[:WINDow]:X:SCALe
syntax: DISPlay[:WINDow]:X:SCALe:<wsp><type>

description: Controls whether the display is in full trace mode or zoomed.

NOTE You must send this command before you perform any zooming
operations.

 The DISP ... :PDIV/? commands described below only work
in AROund mode.

parameters: FULLtrace or AROund.
response: none
example: disp:x:scal full

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: DISPlay[:WINDow]:X:SCALe?
syntax: DISPlay[:WINDow]:X:SCALe?

description: Queries whether the display is in full trace mode or zoomed.
parameters: none

response: FULLtrace or AROund
example: disp:x:scal? → FULL<END>

affects: All instruments
 127

Mass Storage, Display, and Print Functions
command: DISPlay[:WINDow]:X[:SCALe]:PDIVision
syntax: DISPlay[:WINDow]:X[:SCALe]:PDIVision<wsp><value>

description: Determines the scaling of the X-axis.

NOTE This command only works in AROund mode (see
DISP:X:SCAL).

parameters: Valid values for the scaling: 0...15 (a short value):
0 � full trace ...
15� 1 m/DIV

response: none
example: disp:x:pdiv 3

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: DISPlay[:WINDow]:X[:SCALe]:PDIVision?
syntax: DISPlay[:WINDow]:X[:SCALe]:PDIVision?

description: Queries the current scaling of the X-axis.

NOTE This command only works in AROund mode (see
DISP:X:SCAL).

parameters: none
response: Possible values for the scaling: 0...15 (a short value):

0 � full trace
15 � 1 m/DIV

example: disp:x:pdiv? → +3<END>
affects: All instruments
128

Mass Storage, Display, and Print Functions

command: DISPlay[:WINDow]:Y[:SCALe]:PDIVision
syntax: DISPlay[:WINDow]:Y[:SCALe]:PDIVision<wsp><value>

description: Determines the scaling of the Y-axis.

NOTE This command only works in AROund mode (see
DISP:X:SCAL).

parameters: Valid values for the scaling: 1...7 (a short value):
1 �> 5 dB/DIV
7 �> 0.1 dB/DIV

response: none
example: disp:y:pdiv 3

affects: Mini-OTDR, Rack OTDR, and Mainframe OTDR

command: DISPlay[:WINDow]:Y[:SCALe]:PDIVision?
syntax: DISPlay[:WINDow]:Y[:SCALe]:PDIVision?

description: Queries the current scaling of the Y-axis.

NOTE This command only works in AROund mode (see
DISP:X:SCAL).

parameters: none
response: Possible values for the scaling: 1...7(a short value):

1 �> 5 dB/DIV
7 �> 0.1 dB/DIV

example: disp:y:pdiv? → +3<END>
affects: All instruments
 129

Mass Storage, Display, and Print Functions
5.2 Print Operations � The HCOPy Subsystem

The HCOPy subsystem lets you select the print layout and control
the printing.

command: HCOPy:ABORt
syntax: HCOPy:ABORt

description: Cancels the current print job.
parameters: none

response: none
example: hcop:abor

affects: All instruments

command: HCOPy:DESTination
syntax: HCOPy:DESTination<wsp><printer>

description: changes the current printing device.
parameters: The printer�s name as a string.

Valid names for the Mini-OTDR and Rack OTDR are:

PCL100DPI: Standard HP-PCL printer (for example, HP LaserJet or
HP DeskJet) @ 100 dots per inch
PCL150DPI: Standard HP-PCL printer (for example, HP LaserJet or
HP DeskJet) @ 150 dots per inch
EPSONPIN: Epson 8-Pin printer
SEIKODPU: Seiko DPU-411/414

Valid name for the Mainframe OTDR are:

the name of a specific printer, for example HP-LASERJET
INTernal: internal printer
EXTernal: external printer

response: none
example: hcop:dest "PCL100DPI"

affects: All instruments
130

Mass Storage, Display, and Print Functions
command: HCOPy:DESTination?
syntax: HCOPy:DESTination?

description: Queries the current printing device.
parameters: none

response: The printer�s name as a string terminated by <END>.

Valid names for the Mini-OTDR and Rack OTDR are:

PCL100DPI: Standard HP-PCL printer (for example, HP LaserJet or
HP DeskJet) @ 100 dots per inch
PCL150DPI: Standard HP-PCL printer (for example, HP LaserJet or
HP DeskJet) @ 150 dots per inch
EPSONPIN: Epson Pin printer
SEIKODPU: Seiko DPU-411/414
NONE: no printer configured

Valid names for the Mainframe OTDR are:

the name of a specific printer, for example HP-LASERJET
INTernal: internal printer
EXTernal: external printer

example: hcop:dest? → "PCL100DPI"<END>
affects: All instruments

command: HCOPy[:IMMediate]
syntax: HCOPy[:IMMediate]

description: Immediately starts printing everything that has been selected before.
parameters: none

response: none
example: hcop

affects: All instruments
 131

Mass Storage, Display, and Print Functions
command: HCOPy:ITEM:ALL[:IMMediate]
syntax: HCOPy:ITEM:ALL[:IMMediate]

description: Immediately starts printing everything.
parameters: none

response: none
example: hcop:item:all

affects: All instruments

command: HCOPy:ITEM[:WINDow][:IMMediate]
syntax: HCOPy:ITEM[:WINDow][:IMMediate]

description: Immediately starts printing the parameter window.
parameters: none

response: none
example: hcop:item

affects: All instruments

command: HCOPy:ITEM[:WINDow]:STATe
syntax: HCOPy:ITEM[:WINDow]:STATe<wsp><boolean>

description: Enables or disables printing the parameter window.
parameters: A boolean value: 0 � disable

1 � enable
response: none
example: hcop:item:stat 1

affects: All instruments
132

Mass Storage, Display, and Print Functions
command: HCOPy:ITEM[:WINDow]:STATe?
syntax: HCOPy:ITEM[:WINDow]:STATe?

description: Queries printing the parameter window.
parameters: none

response: A boolean value: 0 � parameter window will not be printed
1 � parameter window will be printed

example: hcop:item:stat? → 1<END>
affects: All instruments

command: HCOPy:ITEM[:WINDow]:TEXT[:IMMediate]
syntax: HCOPy:ITEM[:WINDow]:TEXT[:IMMediate]

description: Immediately starts printing the event table.
parameters: none

response: none
example: hcop:item:text

affects: All instruments

command: HCOPy:ITEM[:WINDow]:TEXT:STATe
syntax: HCOPy:ITEM[:WINDow]:TEXT:STATe<wsp><boolean>

description: Enables or disables printing the event table.
parameters: A boolean value: 0 � disable

1 � enable
response: none
example: hcop:item:text:stat 1

affects: All instruments
 133

Mass Storage, Display, and Print Functions
command: HCOPy:ITEM[:WINDow]:TEXT:STATe?
HCOPy:ITEM[:WINDow]:TEXT:STATe?syntax:

description: Queries whether the event table will be printed.
parameters: none

response: A boolean value: 0 � event table will not be printed
1 � event table will be printed

example: hcop:item:text:stat? → 1<END>
affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe[:IMMediate]
syntax: HCOPy:ITEM[:WINDow]:TRACe[:IMMediate]

description: Immediately starts printing the trace.
parameters: none

response: none
example: hcop:item:trac

affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe:STATe
syntax: HCOPy:ITEM[:WINDow]:TRACe:STATe<wsp><boolean>

description: Enables or disables printing the trace window.
parameters: A boolean value: 0 � disable

1 � enable
response: none
example: hcop:item:trac:stat 1

affects: All instruments
134

Mass Storage, Display, and Print Functions
command: HCOPy:ITEM[:WINDow]:TRACe:STATe?
syntax: HCOPy:ITEM[:WINDow]:TRACe:STATe?

description: Queries whether the trace window will be printed.
parameters: none

response: A boolean value: 0 � trace window will not be printed
1 � trace window will be printed

example: hcop:item:trac:stat? → 1<END>
affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe
syntax: HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe<wsp>

<boolean>
description: Enables or disables printing the trace window grid.
parameters: A boolean value: 0 � disable

1 � enable
response: none
example: hcop:item:trac:grat:stat 1

affects: All instruments

command: HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe?
syntax: HCOPy:ITEM[:WINDow]:TRACe:GRATicule:STATe?

description: Queries printing the trace window grid.
parameters: none

response: A boolean value: 0 � trace window grid will not be printed
1 � trace window grid will be printed

example: hcop:item:trac:grat:stat? → 1<END>
affects: All instruments
 135

Mass Storage, Display, and Print Functions
command: HCOPy:PAGE:SIZE
syntax: HCOPy:PAGE:SIZE<wsp><size>

description: Controls the paper size of the printout.
parameters: Valid parameters are LETTer, A or A4.

Please note that LETTer and A are the same page size.
response: none
example: hcop:page:size A4

affects: All instruments

command: HCOPy:PAGE:SIZE?
syntax: HCOPy:PAGE:SIZE?

description: Queries the current paper size of the printout.
parameters: none

response: A value containing A or A4, terminated by <END>
example: hcop:page:size? → A4<END>

affects: All instruments
136

Mass Storage, Display, and Print Functions
5.3 File Operations � The MMEMory Subsystem

The MMEMory subsystem gives you access to the OTDR�s
memory and to the storage devices.

command: MMEMory:CATalog?
syntax: MMEMory:CATalog?

description: Returns the contents of the current directory.
parameters: none

response: A binary Block containing the contents of the directory as ASCII
text, separated by CR/LF. The first digit states the number of digits
following. The digits following give the total number of characters
in the list of filenames.

example: mmem:cat? → #229.
..
DEMO1.SOR
DEMO2.SOR
<END>

affects: All instruments

command: MMEMory:CDIRectory
syntax: MMEMory:CDIRectory<wsp><directory>

description: Changes the current directory.
parameters: The directory given as a string in " ".

response: none
example: mmem:cdir "TRACES"

affects: All instruments
 137

Mass Storage, Display, and Print Functions
command: MMEMory:CDIRectory?
syntax: MMEMory:CDIRectory?

description: Queries the current directory.
parameters: none

response: The directory given as a string terminated by <END>.
example: mmem:cdir? → "TRACES"<END>

affects: All instruments

command: MMEMory:COPY:FILE
syntax: MMEMory:COPY:FILE?<wsp><file>,<newfile>,<device>

description: Copies the specified Bellcore binary file from the current device.
parameters: The file name given as a string in " ".

The name of the new file given as a string in " ".
Device where new file is located: FLASh - internal memory

FLOPpy � diskette
PCMCia - memory card

response: none
example: mmem:copy:file "t0721_01.sor","\abc\test.sor",flop

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: MMEMory:DELete
syntax: MMEMory:DELete<wsp><file>

description: Deletes the specified file from the current directory.
parameters: The file name given as a string in " ".

response: none
example: mmem:del "t0721_01.sor"

affects: All instruments
138

Mass Storage, Display, and Print Functions
command: MMEMory:FREE
syntax: MMEMory:FREE

description: Performs garbage collection on internal memory to reclaim free
space.

parameters: none
response: none
example: mmem:free

affects: Mini-OTDR, Mini-FBL, and Rack OTDR

command: MMEMory:FREE?
syntax: MMEMory:FREE?

description: returns the free and used disk space.
parameters: none

response: <free-space> - the amount of free space
<used-space> - the amount of used space

example: mmem:free? → 125384, 1354789
affects: All instruments

command: MMEMory:INITialize
syntax: MMEMory:INITialize<wsp><device>

description: Formats the specified storage device.
parameters: Valid devices are: FLASh - internal memory

FLOPpy � diskette
PCMCia - memory card

response: none
example: mmem:init flop

affects: Mini-OTDR, Mini-FBL, and Rack OTDR
 139

Mass Storage, Display, and Print Functions
command: MMEMory:LOAD:STATe, :LOAD:TRACe
syntax: for example: MMEM:LOAD:STATe<wsp><file>

description: Loads a settings file or a trace file.
parameters: The file name given as a string in " ".

response: none
example: mmem:load:trac "t0721_01.sor"

affects: MMEM:LOAD:TRACE - All instruments
MMEM:LOAD:STAT does not affect the Mini-FBL.

command: MMEMory:LOAD:FILE?
syntax: MMEMory:LOAD:FILE?<wsp><file>

description: Uploads the specified Bellcore binary file from the OTDR.
parameters: The file name given as a string in " ".

response: binblock (Bellcore binary)
example: mmem:load:file? "t0721_01.sor" → binblock

affects: All instruments

command: MMEMory:MDIRectory
syntax: MMEMory:MDIRectory<wsp><directory>

description: Creates a directory on the current storage device.
parameters: The directory given as a string in " ".

response: none
example: mmem:mdir "TRACES"

affects: All instruments
140

Mass Storage, Display, and Print Functions
command: MMEMory:MSIS
syntax: MMEMory:MSIS<wsp><device>

description: Changes the current storage device.
parameters: Valid devices are: FLASh - internal memory (not Mainframe OTDR)

FLOPpy � diskette
HARDdisk (Mainframe OTDR only)
PCMCia - memory card (not Mainframe OTDR)

response: none
example: mmem:msis flop

affects: All instruments

command: MMEMory:MSIS?
syntax: MMEMory:MSIS?

description: Queries the current storage device.
parameters: none

response: Possible devices are: FLAS - internal memory (not Mainframe
OTDR)
FLOP � diskette
HARD (Mainframe OTDR only)
PCMC - memory card (not Mainframe OTDR)

example: mmem:msis? → FLOP<END>
affects: All instruments

command: MMEMory:NAME
syntax: MMEMory:NAME<wsp><name>

description: Changes the name of the current trace.
parameters: The name given as a string.

response: none
example: mmem:name "t0711_01.sor"

affects: All instruments
 141

Mass Storage, Display, and Print Functions
command: MMEMory:NAME?
syntax: MMEMory:NAME?

description: Queries the name of the current trace.
parameters: none

response: The name given as a string.
example: mmem:name? → "T0711_01.SOR"<END>

affects: All instruments

command: MMEMory:SAVE:FILE
syntax: MMEMory:SAVE:FILE<wsp><file>,<binblock>

description: Downloads the specified file to the OTDR.
parameters: The file name given as a string in " ".

binblock (Bellcore binary)
response: none
example: mmem:save:file "t0721_01.sor",binblock

affects: All instruments

command: MMEMory:STORe:STATe, :STORe:TRACe
syntax: for example: MMEMory:STORe:STATe<wsp><file>

description: Saves a setting or a trace under the specified name.
parameters: The file name given as a string in " ".

response: none
example: mmem:stor:trac "t0721_01.sor"

affects: All instruments
142

Mass Storage, Display, and Print Functions
command: MMEMory:STORe:TRACe:REVision
syntax: MMEMory:STORe:TRACe:REVision<wsp><value>

description: Sets the Bellcore revision number used to store Bellcore files.

NOTE Bellcore revision 1.1 conforms to standards, but you may need to
use Bellcore revision 1.0 for backward compatibility.

parameters: Valid values: (a short value): 10: Bellcore revision 1.0
11: Bellcore revision 1.1

response: none
example: mmem:stor:trac:rev 11

affects: All instruments

command: MMEMory:STORe:TRACe:REVision?
syntax: MMEMory:STORe:TRACe:REVision?

description: Queries the Bellcore revision number according to which Bellcore
files are stored on your OTDR.

parameters: none
response: Possible values: (a short value): 10: Bellcore revision 1.0

11: Bellcore revision 1.1
example: mmem:stor:trac:rev? → +11<END>

affects: All instruments
 143

Mass Storage, Display, and Print Functions
144

6

6 Programming Examples

146

Programming Examples

This section contains some example programs that you can use to
run an OTDR.

This programming examples do not cover the full command set for
the instrument. They are intended only as an introduction to the
method of programming the instrument.

We recommend that you send commands via a program, examples
of which are contained in this chapter. However, for testing
processes you can enter individual commands (for example,
*idn?) from your terminal program (see �How to Send
Commands and Queries� on page 152).

Programming Examples
6.1 How to Connect your OTDR to a PC

This section explains the processes needed to connect your OTDR
to a PC, and set up a serial interface,

This section contains extracts from a demo program. You can see
the program in full in �SCPI data transfer between PC and OTDR�
on page 159.

1 Connect the OTDR serial port to the serial interface of the PC.
Use an Agilent 5180-2477 RS232 cable or an equivalent.

NOTE For more information about attaching cables, consult the appropriate
User�s Guide:

 Mini-OTDR User�s Guide (E6000-91031), Mini-FBL User�s Guide
(E6020-91011), OTDR User�s Guide (E4310-91011), or Rack OTDR
User�s Guide (E6050-91011).

2 If you have no available cable, you can configure your own,
according to the specifications listed in Table 6-1.

Table 6-1 Cable configuration for connection to a PC

Mini-OTDR signal Pin PC-Host signal (9 pin standard) Pin

DCD
RxD
TxD
DTR
GND
DSR
RTS
CTS
RI

[

1
2
3
4
5
6
7
8
9

RTS
TxD
RxD
DSR, CTS
GND
DTR
DCD
DTR
RI

7
3
2
6, 8 (connected)
5
4
1
4
9

 147

Programming Examples
How to set the Instrument Configuration
3 If the instrument is not also configured at your PC�s serial

interface, set the following configuration:

 � baud rate of 19200

 � hardware handshaking

 � 8 data bits

 � no parity

 � 1 stop bit

NOTE This is the default configuration, so you should only need to send these
commands if the instrument configuration has been altered.
148

Programming Examples
HANDLE InitSerial(int baudrate)
 {
 static HANDLE hSer = CreateFile(
 INTERFACE, // use COM1 / Serial A
 GENERIC_READ | GENERIC_WRITE,
 // open for read & write access
 0, NULL,
 OPEN_EXISTING,
 // well, hopefully ... :-)
 0, NULL);

 if(!hSer)
 {
 return NULL;
 }

 // configure the interface ...
 DCB dcb;
 COMMTIMEOUTS commtimeout;
 GetCommTimeouts(hSer, &commtimeout);
 commtimeout.ReadIntervalTimeout = 3000;
 commtimeout.ReadTotalTimeoutMultiplier = 200;
 commtimeout.WriteTotalTimeoutMultiplier = 200;
 commtimeout.WriteTotalTimeoutConstant = 3000;
 GetCommState(hSer, &dcb);
 dcb.DCBlength = sizeof(dcb);
 dcb.BaudRate = baudrate;
 dcb.ByteSize = 8;
 dcb.Parity = 0;
 dcb.StopBits = 1;
 dcb.fBinary = 1;
 dcb.fParity = 0 ;
 dcb.fOutX = 0;
 dcb.fInX = 0;
 dcb.fDtrControl = DTR_CONTROL_DISABLE;

 dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; // RTS flow control

 SetCommState(hSer, &dcb);
 SetCommTimeouts(hSer, &commtimeout);
 ClearCommBreak(hSer);
 PurgeComm(hSer,
 PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

 return hSer;
 }

Figure 6-1 Instrument configuration - example
 149

Programming Examples
6.2 How to Connect with a Terminal Program

1 Start a terminal program on the PC, for example terminal.exe
(Win 3.11 or Windows NT), or hypertrm.exe (Windows 95 or
Hyperterminal).

2 Set the transmission parameters in the terminal program as listed
in Table 6-2:

3 Send a test command in terminal mode to the OTDR:
type *IDN?

4 You should see a response, telling you the identity of your
OTDR.
For example, a Mini-OTDR should respond:

HP E6000 Mini Optical Time Domain
Reflectometer.....

If you see this message, or its equivalent, the basic connection
works.

5 Close the terminal program on the PC.
Closing the terminal program is important, as it avoids later
conflicts with the PC and the interface control.

Table 6-2 Transmission parameters

Speed:
Code, databits:
Communication:
Parity:
Startbits:
Stopbits:
Flow control:

19200 bps (Baud)
8 bit
Full duplex
no parity
1 (not configurable)
1
RTS-CTS (Hardware)
150

Programming Examples
6.3 Using a Program to Connect to the OTDR

1 Send a new line ("\n")

2 Send *idn? to check the identity of the OTDR

3 Check the response to the *idn? query.
The response should be HP ...<END> and give details of the
type of OTDR, and the modules used.
The following responses are possible (depending on you OTDR
type):
� HP E6000 Mini Optical Time Domain

Reflectometer...

� Agilent E6020A Fiber Break Locator
Instrument...

� HP E60xxA Rack Optical Time Domain
Reflectometer...

� HP 8147 Optical Time Domain
Reflectometer...

4 If you do not receive an appropriate response, repeat steps 1 to 3
 151

Programming Examples
until you receive the correct response or you give up.

5 If the response is still incorrect, make the following checks:

How to check the connection

6 Send a break
This resets the instruments and RS232 to the values given in
step 3.

7 Close the device and reopen it.

8 Repeat steps 1 to 4.

6.4 How to Send Commands and Queries

There are two types of SCPI commands: queries which end with a
question mark (?), and commands which do not. Only queries
expect a response.

Commands and queries are discussed below.

 // write query
 sprintf (txtbuffer, "\n");
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
 sprintf(txtbuffer,"*IDN?\n");
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

 // read response
 ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);
 if(cnt == 0 || strlen(txtbuffer) == 0)
 {
 printf("SCPI query failed, exiting!\n");
 CloseHandle(hSerial);
 return;
 }

 // print result (in txtbuffer)
 printf("Connected to: %s\n", txtbuffer);

Figure 6-2 Connection check - example
152

Programming Examples
NOTE For more information about SCPI, please consult Chapter 1
�Introduction to Programming�.

 The SCPI commands specific to OTDRs are listed in Chapter 2
�Specific Commands�, and explained in subsequent chapters.

Commands
Commands must be followed by a newline ("\n").

For example, the abort command abor should be formatted as:

sprintf(txtbuffer,"ABOR\n");

There is no response.

You can check that a command has been sent correctly by sending
the query SYST:ERR?, which returns the contents of the
OTDR�s error queue.

Queries
A query produces a response from the instrument.

If the response is short, you can read the line. Otherwise, you
should read the response one character at a time until you find an
<END> (see Figure 6-3).

Blocks transfer
Larger blocks of data are given as Binary Blocks, preceded by
�#HLenNumbytes�, terminated by <END>; HLen represents the
length of the Numbytes block. For example: #16TRACES<END>.

 sprintf(txtbuffer,"*IDN?\n");
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
 // read response
 ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);

Figure 6-3 Query - example
 153

Programming Examples
For more examples, see Figure 6-4 and �How to Upload a Bellcore
File from the current trace� on page 156

6.5 Common Tasks

This section gives some programming examples for common
OTDR tasks. The examples do not cover all SCPI commands, but
are just a general example.

For a full program containing some of these, and other, commands,
see �SCPI data transfer between PC and OTDR� on page 159.

How to Initialize the Instrument
1 Connect to the instrument,

See �How to Connect your OTDR to a PC� on page 147.

 // read the trace data ...
 sprintf(txtbuffer,"TRACE:DATA?\n");
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

 // now comes the data: e.g. #48000.... which means:
 // | 4 digits following to tell the number
 // of bytes
 // |||| 8000 bytes following, containing
 // 4000 trace pts
 cnt=0;
 while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
 ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
 header[1]=0;
 numbytes = atoi(header);
 ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
 header[cnt] = 0;
 numbytes = atoi(header);
 printf("Reading %d points of trace data ...\n", numbytes/2);
 // 1 point = 16 bit unsigned short
 ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
 ReadFile(hSerial, header, 15, &cnt, 0); // read rest:
<END>\n

Figure 6-4 Blocks transfer - example
154

Programming Examples
2 Clear the error queue.
Send the command *CLS.

3 Check the instrument id
Send the query *IDN?

For example, sending: *idn? may return:

HP E6000 Mini Optical Time Domain
Reflectometer
Mainframe: 3502G00056 , Module: 3525G00056
SW-Rev.: 5.3<END>

How to Set Up an OTDR Measurement
4 Set up the measurement parameters.

For example, send the following commands:
source:puls:width 3us
source:range:start 0km
source:range:span 60km
source:wav 1310nm
sens:det:func:opt dyn
sens:aver:coun 180
sens:fib:refr 1.462

This sets a pulsewidth of 3 us, a start and span of 0 km - 60 km,
a wavelength of 1310nm, dynamic optimize modem an
averaging time of 3 minutes, and a refractive index of 1.462

5 Select the OTDR screen (this is only possible with the Mini-
OTDR and Rack OTDR):
Send the command SENS:DET:MODE OTDR.

How to Run a Measurement
6 Start the measurement

Send the command init.

You can stop the measurement with the abor command, or wait
until the Averaging Time is complete,

7 Check whether the measurement is still running
 155

Programming Examples
*opc? returns 0 if the measurement is still running, and 1 if
the measurement is finished.

The measurement has now stopped, and you can check the results

How to Scan a Trace
8 Send the command prog:expl:exec "scan"

When the scan is complete, *opc? returns 1 (see note 7,
above).

How to Process a Trace
9 Print the Trace

Send the command hcop:item:all

10 Save the Trace
Send the command mmem:stor:trac "newtrace.sor"

How to Upload a Bellcore File from the current trace
11 Upload the file from the OTDR

Send the query MMEM:LOAD:FILE? ""

12 Read in the first character
This character should be a hash (#).

13 Read in the next character
This character should be an integer, m, giving the number of
digits you should now read.

14 Read in the next m characters
This series of characters should form an integer, n, giving the
number of data bytes that follow.

15 Read in the next n data bytes, and store them.

16 Read until the final <END>.
156

Programming Examples
17 Check that there have been no errors.

6.6 Advanced Topics

This section gives some further examples of SCPI commands that
you may wish to use when programming your OTDR.

How to Download a Bellcore File
1 Download a specified file to the OTDR

Send the command
mmem:save:file "newtrace.sor"#Asss....

Where #Assss... is a binary block containing the Bellcore
file.

 // now comes the data: e.g. #48000.... which means:
 // | 4 digits following to tell the number
 // of bytes
 // |||| 8000 bytes following, containing
 // 4000 trace pts
 cnt=0;
 while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
 ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
 header[1]=0;
 numbytes = atoi(header);
 ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
 header[cnt] = 0;
 numbytes = atoi(header);
 printf("Reading %d points of trace data ...\n", numbytes/2);
 // 1 point = 16 bit unsigned short
 ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
 ReadFile(hSerial, header, 15, &cnt, 0); // read rest:
<END>\n

 // write the data to the console ...
 for(unsigned int i=0; i<numbytes/2; i++)
 {
 printf("idx: %d, value: %d\n", i, tracebuf[i]);
 }

Figure 6-5 Uploading a Bellcore file - example
 157

Programming Examples
How to Use the Power Meter and Source Mode
These examples show you how to user the Power Meter options on
the Mini-OTDR and Rack OTDR. They are not valid for the 8147A
Mainframe OTDR.

1 Select source mode
Send the command SENS:DET:MODE SOUR.

2 Reset the reference power
Send the command SENS:POW:REF 0.

3 Set the power meter display to absolute power level readout
Send the command SENS:POW:REF:STAT 0.

4 Select Watts (W) as the readout unit.
Send the command SENS:POW:UNIT W

5 Start a measurement on the power meter.
Send the command INIT2:CONT 0.

6 Read the detected wavelength and power.
Send the queries SENS:POW:WAV? and READ:POW?
These return, for example, 1310NM<END> and
1.07898NW<END>.

These queries respectively return the current power meter
wavelength (in nm), and the current power reading (in dBm, W, or
dB).

How to Store Traces on Other Devices
1 Select a new storage device.

For example, send the command MMEM:MSIS FLOP to
change to the floppy disk drive.

2 Check that the device has been changed correctly.
Send the query MMEM:MSIS?

You should receive a string corresponding to the device that you
have just set, in this case FLOP.

3 Check that there is enough free disk space.
158

Programming Examples
Send the query MMEM:FREE?.

You receive a response giving 2 values. The first value gives the
amount of free space.

4 Reclaim extra disk space, if required (this is not possible with the
Mainframe OTDR).
Send the command MMEM:FREE.

NOTE MMEM:FREE replaces internal disk space only (not, for example, for the
Flash Disk or Floppy disk).

6.7 SCPI data transfer between PC and OTDR

This C program transfers data between the Mini-OTDR and a PC.

Before you run this program connect the PC and the OTDR with an
RS232 cable (see the Mini-OTDR User�s Guide)

The program sets the measurement parameters, starts the
measurement, stops the measurement 15 seconds later, and
transfers the trace data to the PC.

NOTE TRAC:DATA? and TRAC:DATA:LINE? returns blocks of unsigned
short (16-bit) data in Intel little endian byte ordering (low byte first).

Some processor architectures (such as HP PA-Risc or Motorola) use big
endian byte order (high byte first).

If your processor uses big endian byte order, you must swap the low and
high byte for each 16 bit value.

If you are not sure about the byte ordering technique used by your
processor, please consult your processor documentation.

/* --
 159

Programming Examples
* Module: demoapp.cpp *
* Description: application to demonstrate a SCPI data transfer between PC<->OTDR *
* Copyright: 12/02/1996 Hewlett-Packard GmbH *
* NOTE: This application is not supported by HP/Agilent! *
* HP/Agilent cannot be held responsible *
* for any problems/damages caused by this program! *
* *
* Compile: Compile this program as a 32Bit Console Application under Win95/NT. *
* We recommend a struct member byte alignment of 2 bytes. *
* ---*/

#include <windows.h>
#include <stdio.h>
#include <string.h>

#define INTERFACE "COM1"
#define MAXNUMBYTES 255
#define TRLEN 16512

HANDLE InitSerial(int baudrate)
 {
 static HANDLE hSer = CreateFile(
 INTERFACE, // use COM1 / Serial A
 GENERIC_READ | GENERIC_WRITE, // open for read & write access
 0, NULL,
 OPEN_EXISTING, // well, hopefully ... :-)
 0, NULL);

 if(!hSer)
 {
 return NULL;
 }

 // configure the interface ...
 DCB dcb;
 COMMTIMEOUTS commtimeout;
 GetCommTimeouts(hSer, &commtimeout);
 commtimeout.ReadIntervalTimeout = 3000;
 commtimeout.ReadTotalTimeoutMultiplier = 200;
 commtimeout.WriteTotalTimeoutMultiplier = 200;
 commtimeout.WriteTotalTimeoutConstant = 3000;
 GetCommState(hSer, &dcb);
 dcb.DCBlength = sizeof(dcb);
 dcb.BaudRate = baudrate;
 dcb.ByteSize = 8;
 dcb.Parity = 0;
 dcb.StopBits = 1;
 dcb.fBinary = 1;
 dcb.fParity = 0 ;
 dcb.fOutX = 0;
 dcb.fInX = 0;
 dcb.fDtrControl = DTR_CONTROL_DISABLE;
 dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; // RTS flow control

 SetCommState(hSer, &dcb);
 SetCommTimeouts(hSer, &commtimeout);
 ClearCommBreak(hSer);
 PurgeComm(hSer, PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
160

Programming Examples
 return hSer;
 }

void main(int argc, char** argv)
 {
 int baudrate=19200; // default value for baudrate
 HANDLE hSerial=NULL; // windows handle for interface
 char txtbuffer[MAXNUMBYTES+1]; // ascii buffer for commands/ascii queries
 char header[16]; // buffer to read the binary header into
 unsigned short tracebuf[TRLEN]; // binary buffer for trac:data? query
 unsigned long cnt; // number of bytes actually written/read
 unsigned long numbytes; // number of bytes to write/read

 // if argc>1, take argv[1] as the current baudrate
 if(argc>1)
 {
 baudrate = atoi(argv[1]);
 if(baudrate < 1200 || baudrate > 115200) baudrate = 19200;
 }

 // initialize the interface ...
 printf("Setting baudrate to %d!\n", baudrate);
 hSerial = InitSerial(baudrate);

 if(!hSerial)
 {
 printf("Failed to open %s, exiting!\n", INTERFACE);
 return;
 }

 // now start communicating ...
 sprintf(txtbuffer,"*CLS\n");
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
 sprintf(txtbuffer,"*IDN?\n");
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
 ReadFile(hSerial, txtbuffer, MAXNUMBYTES, &cnt, 0);
 if(cnt == 0 || strlen(txtbuffer) == 0)
 {
 printf("SCPI query failed, exiting!\n");
 CloseHandle(hSerial);
 return;
 }

 printf("Connected to: %s\n", txtbuffer);

 // setting measurement parameters ...
 sprintf(txtbuffer,"SOURCE:RANGE:START 0\n"); // measurement start
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
 sprintf(txtbuffer,"SOURCE:RANGE:SPAN 10km\n"); // measurement span
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
 sprintf(txtbuffer,"SOURCE:PULSE:WIDTH 100ns\n"); // pulsewidth
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
 sprintf(txtbuffer,"SOURCE:WAVELENGTH 1310nm\n"); // wavelength
 numbytes = strlen(txtbuffer);
 161

Programming Examples
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

 // start the measurement ...
 printf("Starting measurement ...\n");
 sprintf(txtbuffer,"INIT\n");
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

 Sleep(15000); // give it 10s to run + 5s for init ...

 // stop the measurement ...
 printf("Stopping measurement ...\n");
 sprintf(txtbuffer,"ABORT\n");
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);
 Sleep(1000); // wait a little for things to settle ...

 // read the trace data ...
 sprintf(txtbuffer,"TRACE:DATA?\n");
 numbytes = strlen(txtbuffer);
 WriteFile(hSerial, txtbuffer, numbytes, &cnt, 0);

 // now comes the data: e.g. #48000.... which means:
 // | 4 digits following to tell the number of bytes
 // |||| 8000 bytes following, containing 4000 trace pts
 cnt=0;
 while(!cnt) ReadFile(hSerial, header, 1, &cnt, 0); // read "#"
 ReadFile(hSerial, header, 1, &cnt, 0); // read number of digits
 header[1]=0;
 numbytes = atoi(header);
 ReadFile(hSerial, header, numbytes, &cnt, 0); // read digits
 header[cnt] = 0;
 numbytes = atoi(header);
 printf("Reading %d points of trace data ...\n", numbytes/2);
 ReadFile(hSerial, tracebuf, numbytes, &cnt, 0); // read trace data
 ReadFile(hSerial, header, 15, &cnt, 0); // read rest: <END>\n

 // write the data to the console ...
 for(unsigned int i=0; i<numbytes/2; i++)
 {
 printf("idx: %d, value: %d\n", i, tracebuf[i]);
 }

 // close the interface
 CloseHandle(hSerial);
 return;
 }
162

A

A The VEE Driver

164

The VEE Driver

This appendix gives you extra information about using HP/Agilent
OTDRs with the HP VEE VXI-plug&play driver.

You will find the driver on the update CD under vxipnp/.

The VEE Driver
A.1 What is HP VEE ?

Hewlett-Packard Visual Engineering Environment (HP VEE) is a
visual programming language optimized for instrument control
applications. To develop programs in HP VEE, you connect
graphical �objects� instead of writing lines of code. These programs
resemble easy-to-understand block diagrams with lines.

HP VEE allows you to leverage your investment in textual
languages by integrating with languages such as C, C++, Visual
Basic, FORTRAN, Pascal, and HP BASIC.

HP VEE controls GPIB, VXI, Serial, GPIO, PC Plug-in, and LAN
instruments directly over the interfaces or by using instrument
drivers.

HP VEE supports VXIplug&play drivers in the WIN, WIN95,
WINNT, and HP-UX frameworks. In addition, versions 3.2 and
above of HP VEE support the graphical Function Panel interface,
providing a function tree of the hierarchy of the driver.

NOTE This appendix assumes that you are using Windows 95. If you are using
Windows NT, please replace every reference to win95 with winnt.

Windows 95 and Windows NT are registered trademarks of Microsoft
corporation.

HP VEE automatically calls the initialize and close functions to
perform automatic error checking.

Using the RS232 port
HP VEE supports interfacing with an instrument from the RS232
port. Before you can do this, you must do the following:

1 Select INSTRUMENT MANAGER from the IO menu.

2 Double-click on the Add button to bring up the Device
 165

The VEE Driver
Configuration screen.

3 Enter the following information:

 � Name: choose any name to describe the instrument.

 � Interface: HP-IB (even if you want to use the serial port).

 � Address: key in any number (it does not matter which
number you enter as you will only be using one of the serial
ports).

 � Gateway: This host.

4 Press Advanced I/O Config, and select the hpotdr
plug&play Driver from a drop down list.

NOTE If you do not see this driver in the list, it has not been installed properly.

5 If you are planning to use the COMx port in the machine, specify
the address of the instrument as ASRLx.

6 Select whether Reset and Instrument Name Check
should be performed whenever VEE opens the instrument for
interaction.�

7 Return to the Instrument Manager screen, and select OK to save
the configuration.

A.2 How to Install HP VEE

The HP VEE VxIplug&play driver comes as a self-extracting
archive with an installation wizard. The installation wizard extracts
all the files to preset destinations, asking you appropriate questions
as it does so.

You install HP VEE by running the executable OTDR.EXE. When
you run OTDR.EXE, you see a message telling you that the HP
OTDR Instrument Driver will be installed.
166

The VEE Driver
1 Press Yes to continue.
You see a VXIplug&play window, and a message telling you
that you are not an administrator (Figure A-1)

2 Ignore this message, and press Yes to continue.

NOTE If HP VEE is already installed on your system, you see a message asking
you if you want to uninstall the old version.

Press Yes, if required, then wait until you see a message telling you that
the uninstall has been successful. Then press OK to continue.

You see a Welcome message, advising you to close the
programs that you have running.

3 Close these programs and press Next> to continue.

Figure A-1 VXIplug&play window
 167

The VEE Driver
NOTE If you do not have VISA installed, you see a message advising you to
install VISA.

Press Cancel to temporarily exit this installation procedure; install
VISA on your PC, then run OTDR.EXE again.

You see a window showing you what you can install (Figure A-
2).

4 Select any or all of Read Me, Help and Uninstall, then
press Next> to continue.

You see a window asking you in which folder you want to
install the files.

5 Select the default, VXIPNP, or choose a folder that you want.
Press Next> to continue.
You see a message saying that setup is complete, giving you an
option to view the Readme file.

6 Press Finish to complete installation, viewing the Readme file

Figure A-2 HP VEE - Install options
168

The VEE Driver
if you wish.

A.3 Features of the HP OTDR VEE Driver

The HP OTDR VEE driver conforms to all aspects of the
VXIplug&play driver standard which apply to conventional rack
and stack instruments.

The following features are available:

 � The VEE driver conforms with the VXIplug&play standard.
There is one exception as the OTDR driver does not have a soft
front panel or a knowledge-based file.

 � The VEE driver is built on top of VISA, and uses the services
provided.
VISA supports GPIB and VXI protocols. The driver can be
used with any GPIB card for which the manufacturer has
provided a VISA DLL.

 � The VEE driver includes a Function Panel (.FP) file.
The .FP file allows the driver to be used with visual
programming environments such as HP-VEE, LabWindows,
and LabVIEW.

 � The VEE driver includes a comprehensive on-line help file
which complements the instrument manual.
The help file contains application programming examples, a
cross-reference between instrument commands and driver
functions, and detailed documentation of each function with
examples.

 � The VEE driver includes a source, so that the driver can be
modified if desired.
The source conforms to VXIplug&play standards. You should
only modify the driver if you are familiar with these standards.
 169

The VEE Driver
 � The VEE driver includes a Visual Basic (.BAS) file which
contains the function calls in Visual Basic syntax, and allows the
driver functions to be called from Visual Basic.
You should only use Visual Basic with this driver if you are
familiar with C/C++ function declarations. You must take
particular care when working with C/C++ pointers.

A.4 Directory Structure

The setup program which installs the HP OTDR instrument driver
creates the VXIPNP directory if it does not already exist.
Windows 95 files are in VXIPNP\WIN95; Windows NT files are
in VXIPNP\WINNT.

A.5 Opening an Instrument Session

To control an instrument from a program, you must open a
communication path between the computer/controller and the
instrument. This path is known as an instrument session, and is
opened with the function

ViStatus hpotdr_init(ViRsrc InstrDesc,
ViBoolean id_query, ViBoolean reset,
ViPSession instrumentHandle);

Instruments are assigned a handle when the instrument session is
opened. The handle, which is a pointer to the instrument, is the first
parameter passed in all subsequent calls to driver functions.

The parameters of the function hpotdr_init include:

 � ViRsrc InstrDesc: the address of the instrument
170

The VEE Driver
 � ViBoolean id_query: a Boolean flag which indicates if in-
system verification should be performed.
Passing VI_TRUE (1) will perform an in-system verification;
passing VI_FALSE (0) will not.
If you set id_query to false, you can use the generic functions
of the instrument driver with other instruments.

 � ViBoolean reset: a Boolean flag which indicates if the
instrument should be reset when it is opened.
Passing VI_TRUE (1) will perform a reset when the session is
opened; passing VI_FALSE (0) will not perform a reset,

 � ViPSession instrumentHandle: a pointer to an
instrument session.
InstrumentHandle is the handle which addresses the
instrument, and is the first parameter passed in all driver
functions.
Successful completion of this function returns VI_SUCCESS

A.6 Closing an Instrument Session

Sessions (instrumentHandle) opened with the hpotdr_init()
function are closed with the function:

hpotdr_close(ViSession instrumentHandle);

When no further communication with an instrument is required, the
session must be explicitly closed (hpotdr_close() function).

VISA does not remove sessions unless they are explicitly closed.
Closing the instrument session frees all data structures and system
resources allocated to that session.
 171

The VEE Driver
A.7 VISA Data Types and Selected Constant
Definitions

The driver functions use VISA data types. VISA data types are
identified by the Vi prefix in the data type name (for example,
ViInt16, ViUInt16, ViChar).

The file visatype.h contains a complete listing of the VISA
data types, function call casts and some of the common constants.

NOTE You can find a partial list of the type definitions and constant
definitions for the visatype.h in the HP OTDR Instrument Driver
Online Help.

A.8 Error Handling

Events and errors within a instrument control program can be
detected by polling (querying) the instrument. Polling is used in
application development environments (ADEs) that do not support
asynchronous activities where callbacks can be used.

Programs can set up and use polling as shown below.

1 Declare a variable to contain the function completion code.
ViStatus errStatus;

Every driver function returns the completion code ViStatus.
If the function executes with no I/O errors, driver errors, or
instrument errors, ViStatus is 0 (VI_SUCCESS).
If an error occurs, ViStatus is a negative error code.
Warnings are positive error codes, and indicate the operation
succeeded but special conditions exist.

2 Enable automatic instrument error checking following each
172

The VEE Driver
function call.
hpotdr_errorQueryDetect
(instrumentHandle, VI_TRUE);

When enabled, the driver queries the instrument for an error
condition before returning from the function.
If an error occurred, errStatus (Step 1) will contain a code
indicating that an error was detected
(hpotdr_INSTR_ERROR_DETECTED).

3 Check for an error (or event) after each function.
errStatus = hpotdr_cmd(instrumentHandle,
"MEAS:FREQ");

check(instrumentHandle, errStatus);

After the function executes, errStatus contains the
completion code.
The completion code and instrument ID are passed to an error
checking routine. In the above statement, the routine is called
'check'.

4 Create a routine to respond to the error or event.

A.9 Introduction to Programming

Selecting Functions
The functions in each category are identified below.

Application Functions

These functions do application level tasks. They are designed to
allow quick and easy access to common instrument measurement
sequences.

Application functions are instrument-specific, and can be used for
common instrument measurement tasks.
 173

The VEE Driver
Subsystem Functions

These functions combine multiple SCPI commands into a single,
functional operation. They are designed to allow quick and easy
access to common instrument command sequences.

Subsystem functions are instrument-specific, and cab be used for
functional tasks.

Passthrough Functions

Passthrough functions pass SCPI commands directly to the
instrument. These functions are used when there is not a driver
function available to set or perform a particular operation.

Utility Functions

Utility functions perform a variety of standard tasks.

Example Programs
See the Online Help and Chapter 6 �Programming Examples�.

LabView
The 32-bit HP/Agilent OTDR driver can be used with LabVIEW
4.0 and above. LabVIEW 4.0 is a 32-bit version of LabVIEW
which runs on Windows 95 and Windows NT.

To access the functions of the HP/Agilent OTDR instrument driver
from within LabVIEW 4.0, select FILE from the main menu, then
select the CONVERT CVI FP FILE submenu item.

In the file selection dialog box which appears, select hpotdr.fp
and click on the OK button.

LabVIEW will create a series of VI's, one per driver function. It
will create a file called hpotdr.llb which contains these VI's.
This library of VI's can then be accessed like any other VI library in
LabVIEW.
174

The VEE Driver
NOTE You must use the 32-bit version of the HP/Agilent OTDR driver with
LabVIEW 4.0.

NOTE LabView is a trademark of National Instruments Corporation

LabWindows
The 32-bit HP/Agilent OTDR driver can be used with LabWindows
4.0 and above. LabWindows 4.0 is a 32-bit version of LabWindows
which runs on Windows 95 and Windows NT.

To access the functions of the HP/Agilent OTDR driver from within
LabWindows, select INSTRUMENT from the main menu, and then
select the LOAD... submenu item.

In the file selection dialog box which appears, select hpotdr.fp
and click on the OK button. LabWindows loads the function panel
and instrument driver.

The driver now appears as a selection on the Instrument menu, and
can be treated like any LabWindows driver.

NOTE LabWindows is a trademark of National Instruments Corporation

A.10 VISA-specific information

The following information is useful if you are using the driver with
a version of VISA.

Instrument Addresses
When you are using HP VXIplug&play instrument drivers, you
should enter the instrument addresses using only upper case letters.
This is to ensure maximum portability.
 175

The VEE Driver
For example, use GPIB0::22 rather than gpib0::22.

Callbacks
Callbacks are not supported by this driver.

A.11 Using the HP OTDR VEE Driver in
Application Development Environments

The sections contains suggestions as to how you can use
hpotdr_32.dll within various application development
environments.

Microsoft Visual C++ 4.0 (or higher) and Borland
C++ 4.5 (or higher)
Please refer to your Microsoft Visual C++ or Borland C++ manuals
for information on linking and calling DLLS.

The driver uses Pascal calling conventions.

You should rebuild the driver DLL in a different directory to the
directory in which the driver was installed. This helps you to
differentiate the changes.

Microsoft Visual Basic 4.0 (or higher)
Please refer to your Microsoft Visual Basic manual for information
on calling DLLs.

The BASIC include file is hpotdr.bas. You can find this file in
the directory ~vxipnp\win95\include, where ~ is the
directory in the VXIPNP variable.

By default, ~ is equivalent to C:\. This means that the file is in
C:\vxipnp\win95\include.
176

The VEE Driver
You may also need to include the file visa.bas. visa.bas is
provided with your VISA DLL.

HP VEE 3.2 (or higher)
Your copy of HP VEE for Windows contains a document titled
Using VXIplug&play drivers with HP VEE for Windows. This
document contains the detailed information you need for HP VEE
applications.

LabWindows CVI/ (R) 4.0 (or higher)
The HP OTDR VEE driver is supplied as both a source code file,
and as a Dynamic Link Library (.DLL) file.

There are several advantages to using the .DLL form of the driver,
including those listed below:

 � transportability across different computer platforms,

 � a higher level of support for the compiled driver from Hewlett-
Packard,

 � a faster load time for your project.

LabWindows/CVI (R) will attempt by default to load the source
version of the instrument driver. To load the DLL, you must include
the file HPOTDR.FP in your project. HPOTDR.FP can be found in
the directory vxipnp\win95\hpotdr.

Do not include HPOTDR.C in your project.

You must provide an include file for HPOTDR.H. You do this by
ensuring that the directory ~vxipnp\win95\include is added
to the include paths (CVI Project Option menu).
~ is the directory in the VXIPNP variable. By default, ~ is
equivalent to C:\. This means that the file is in
C:\vxipnp\win95\include.
 177

The VEE Driver
A.12 Online information

The latest copy of this driver and other HP VXIplug&play drivers
can be obtained from the World Wide Web at:

http://www.agilent.com/find/inst_drivers

If you do not have web access, please contact your Agilent supplier,
or use the version of OTDR.EXE on your installation CD.
178

Index

A

Abort
measurement79
printing130

Add landmark112
Around marker127
Attenuation87
Automatic measurement

mode92
Average

number of averages 90
Average mode91
Averaging time89

B

Battery
current58
power57
power capacity57

Baud rate62
Bellcore file

download157
upload156

Bellcore revision number
143

Binary block18,
153

Blocks transfer153
Brightness123

C

Cable configuration ..147
CALCulate subsystem 83
Clear

event registers45

Close
all traces117
trace117

Color125
Command messages .17
Command syntax17
Commands153
Comment126
Common commands .20
Common status registers 22
Condition register56, 59
Continue mode91
Continuous measurement 80
Contrast123,

124
Copy

file138
Current58
Current trace117,

118
CW mode91

D

Data bits63
Data points118,

119
Data transfer159
Data types18
Date69
Defaults47
Delete

all traces117
file138
landmark113
trace117

Device158
change141
format139

query141
Directory

change137
contents137
create140
query138

Display
brightness123
contrast123,

124
LCD124

Display Operations ...123
DISPlay Subsystem ..123
Dotted line125,

126
Download file142,

157
Dynamic optimization 92,

93

E

Empty traces118
End Threshold85, 86
Error queue19, 70
Event register

clear45
operation56
operation enable ...56, 57
questionable59
questionable enable 59,

60
Event Status Enable ..46
Event Status Register 47
Event Table115

lock115
print133,

134
 179

Front Matter

F

Factory default47
Fiber

type95
Fiber Break Locator .93
File

copy138
delete138
download142
upload140

File operations137
Flash disk141

format139
Floppy141

format139
Format

device139
Free space139

reclaim139
Frequency96
Front connector Return Loss

112
Full trace127

G

GPIB address61, 62
Grid

print135

H

Hard disk141
HCOPy subsystem ...130
Help page70
Horizontal offset101

I

Identification48
IEEE-Common Commands

45
Initialize154
Input frequency96
Input queue19
Installed options50
Instrument Behaviour Set-

tings61
Instrument Configuration

148
example149

Instrument setting
load73
read73
save53
set73

Interface
behaviour settings .61

K

Keyboard81
Keystroke

return last keystroke 72
simulate keystroke 71

L

Landmark
add112
delete113

Laser
state104
switch on104

LCD124

Learn49
Length unit106
Line

store114
Linearity optimization 92,

93
Linestyle125,

126
Load file140
Lock

event table115
Loss87
LSA Attenuation87

M

M2kHz mode91
Marker

activate103
disable103
position102
state103

Measurement155
start80
stop79

Measurement Functions 89
Measurement mode ..91

automatic92
Message exchange ...18
MMEMory subsystem 137
Modulation frequency

internal source100
visual fault finder .100,

101
Module

fiber type95
Multimode fiber95
180

Index

N

Non-Reflective Threshold
85,86

Notices2
Number of averages .90

O

Operating time58
Operation Complete .49
Operation condition register

56
Operation enable56, 57
Operation event register 56
Optimization mode ...92, 93
Options50
OTDR

initialize154
OTDR mode93
OTDR screen93
Output queue19

P

Pace65, 66
Paper size136
Parameter window

print132,
133

Parity checking67, 68
Parity type66, 67
Pass/Fail test85

limits83, 84
state112
table111

PC
connect with OTDR 147

PCMCIA141
format139

Power57
capacity57
current58

Power Meter158
continuous measurement

80
start measurement .80

Power meter
absolute display ...97
continuous measurement

80
current value79, 82
input frequency96
reference value96, 97
relative display97
units96, 98
wavelength98, 99

Print156
abort130
device130,

131
event table133,

134
grid135
paper size136
parameter window 132,

133
print all132
print all selected ...131
trace134,

135
Print operations130
Printer130,

131
PROGram subsystem 83
Pulsewidth104,

105
lower limit105
upper limit105

Q

Queries153
Questionable enable .59, 60
Questionable event register

59

R

Realtime mode91
Recall saved settings 51
Reclaim free space ...139
Reflectance87, 88
Reflection Height88
Reflection parameter 88
Reflective Threshold 85, 86
Refractive index94
Reset52
Reset default47
Resolution optimization 92,

93
Return Loss

front connector112
total116

Return Loss mode91
Root layer commands 79
RS23268,

147
RS48568

S

Sample distance94
Save53,

156
setting142
trace142
 181

Front Matter

Saved settings51
Scale

x-scale128
y-scale129

Scan Trace85,
156

Scatter coefficient95
SCPI revision75
Self-test54
SENSe subsystem89
Serial 2

configuration68
send command64
send query64
send/receive data ..61

Serial interface
baud rate62
data bits63
pace65, 66
parity checking67, 68
parity type66, 67
stop bits68, 69

Setting
save142

Settings file
load140

Signal generation100
Single-mode fiber95
Solid line125,

126
Source Mode93,

158
SOURce subsystem ..100
Span106,

107
Specific Command Summary

33,34
Splice loss88
Start107

laser104

measurement80
power meter measurement

80
Status Byte54
Status Command Summary

27
Status Information22
Status Registers22
Status Reporting56
STATus subsystem ..56
Stop

laser104
measurement79

Stop bits68, 69
Subsystem

CALCulate83
DISPlay123
HCOPy130
MMEMory137
PROGram83
SENSe89
SOURce100
STATus56
SYSTem61
TRACe110

SYSTem subsystem ..61

T

Terminal program150
Terminate

current task86
Test54
Text

enter81
Threshold85, 86
Time74

since power on74
Total Optical Return Loss

116
Trace

close117
close all117
color125
comment126
current trace117,

118
data array111
data points118,

119
empty traces118
linestyle125,

126
load file140
loaded110
name142
print134,

135, ...156
rename141
save142,

156
Trace array18
Trace Data Access ...75,

110
TRACe subsystem ...110
Traffic detection82
Transfer

blocks153

U

Units17,
106

Upload file140,
156

Uptime74
182

Index

V

Visual Fault Finder
modulation frequency

100, ...101

W

Wait55
Wavelength108

available109
power meter98, 99

X

x-scale128

Y

y-scale129

Z

Zoom
around marker127
 183

	About This Manual
	Service and Support
	Introduction to Programming
	1.1 Command Messages
	Units
	Trace Array
	Data
	Message Exchange
	The Input Queue
	Clearing the Input Queue

	The Output Queue
	The Error Queue

	1.2 Common Commands
	Common Command Summary
	Common Status Information

	1.3 HP/Agilent OTDR Status Model
	Annotations
	Standard Event Status Register
	Operation/Questionable Status
	Operation Status
	Questionable Status
	Status Command Summary
	Mini-OTDR and Rack OTDR Bit Table
	Mainframe OTDR Bit Table
	Other Commands

	Specific Commands
	2.1 Specific Command Summary

	Instrument Setup and Status
	3.1 IEEE-Common Commands
	*CLS
	*ESE
	*ESE?
	*ESR?
	*FTY
	*IDN?
	*LRN?
	*OPC?
	*OPT?
	*RCL
	*RST
	*SAV
	*STB?
	*TST?
	*WAI

	3.2 Status Reporting – The STATus Subsystem
	3.3 Interface/Instrument Behaviour Settings – The SYSTem Subsystem

	Operations on Traces and Measurements
	4.1 Root Layer Commands
	4.2 Playing With Data – The PROGram and CALCulate Subsystems
	4.3 Measurement Functions – The SENSe Subsystem
	4.4 Signal Generation – The SOURce Subsystem
	4.5 Trace Data Access – The TRACe Subsystem

	Mass Storage, Display, and Print Functions
	5.1 Display Operations – The DISPlay Subsystem
	5.2 Print Operations – The HCOPy Subsystem
	5.3 File Operations – The MMEMory Subsystem

	Programming Examples
	6.1 How to Connect your OTDR to a PC
	How to set the Instrument Configuration

	6.2 How to Connect with a Terminal Program
	6.3 Using a Program to Connect to the OTDR
	How to check the connection

	6.4 How to Send Commands and Queries
	Commands
	Queries
	Blocks transfer

	6.5 Common Tasks
	How to Initialize the Instrument
	How to Set Up an OTDR Measurement
	How to Run a Measurement
	How to Scan a Trace
	How to Process a Trace
	How to Upload a Bellcore File from the current trace

	6.6 Advanced Topics
	How to Download a Bellcore File
	How to Use the Power Meter and Source Mode
	How to Store Traces on Other Devices

	6.7 SCPI data transfer between PC and OTDR

	The VEE Driver
	A.1 What is HP VEE�?
	Using the RS232 port

	A.2 How to Install HP VEE
	A.3 Features of the HP OTDR VEE Driver
	A.4 Directory Structure
	A.5 Opening an Instrument Session
	A.6 Closing an Instrument Session
	A.7 VISA Data Types and Selected Constant Definitions
	A.8 Error Handling
	A.9 Introduction to Programming
	Selecting Functions
	Application Functions
	Subsystem Functions
	Passthrough Functions
	Utility Functions

	Example Programs
	LabView
	LabWindows

	A.10 VISA-specific information
	Instrument Addresses
	Callbacks

	A.11 Using the HP OTDR VEE Driver in Application Development Environments
	Microsoft Visual C++ 4.0 (or higher) and Borland C++ 4.5 (or higher)
	Microsoft Visual Basic 4.0 (or higher)
	HP VEE 3.2 (or higher)
	LabWindows CVI/ (R) 4.0 (or higher)

	A.12 Online information

